Rapidly rising societal awareness about the planet sustainability through developing environmentally friendly and biodegradable alternatives to current impact of plastics waste represents an emerging need for establishing a circular bioeconomy of cleaner, safer, greener, and sustainable future. Until now, no investigation has been done on edible tableware made from leftover fruit peels. Presently, Kinnow mandarin is the most commercially farmed citrus fruit commodity, with the highest production, productivity, and popularity among all horticulture crops worldwide, generating vast quantity of peels ending up as putrefying biowaste that impacts ecosystem health.
View Article and Find Full Text PDFThis research aimed to investigate the feasibility of using a bionanocomposite made of chitosan, CNC, and TiO2 nanoparticles to package freshly sliced apples. At the outset, the effect of varying concentrations of CNC (1, 5, and 10 %) and TiO (1, 3, and 5 %) on the mechanical, thermal, and water sensitivity characteristics of the chitosan bionanocomposite was studied. Among different combinations, the bionanocomposite containing 10 % CNC and 3 % TiO displayed significant enhancements compared to neat chitosan film.
View Article and Find Full Text PDFIn the current study, a guar-gum-based biodegradable hydrogel film was prepared using an initiator (potassium persulfate), crosslinker (N-N methyl bis acrylamide), and plasticizer (glycerol) for packaging of fruits and vegetables. The effect of independent variables (initiator, crosslinker, and plasticizer) on the biodegradation (% wt. loss), color difference (ΔE), hardness (N), swelling index (%), and transparency (%) of the film was studied using Box-Behnken design, random surface methodology (RSM).
View Article and Find Full Text PDFThe purpose of this work was to use a microwave-assisted technique to improve and accelerate lignin removal from rice straw biomass. Using a Box-Behnken experimental design, the effect of four critical process parameters, viz. microwave power (480-800 W), irradiation time (4-12 min), bleaching solution concentration (0.
View Article and Find Full Text PDFUltrasonic technology was applied to release the phenolics bound with starch and protein matrix in order to enhance total phenolic content (TPC) and antioxidant activity (AA) of the sorghum flour. Both the continuous flow and batch ultrasonication were implied with independent variables such as flour to water ratio (FWR), ultrasonication intensity (UI), and ultrasonication time (UT) with an additional variable as flow rate (FR) in continuous flow ultrasonication. All the process variables showed a significant effect on the corresponding ultrasonication process.
View Article and Find Full Text PDF