Publications by authors named "U Brandt-Pollmann"

We introduce a numerical complexity reduction method for the automatic identification and analysis of dynamic network decompositions in (bio)chemical kinetics based on error-controlled computation of a minimal model dimension represented by the number of (locally) active dynamical modes. Our algorithm exploits a generalized sensitivity analysis along state trajectories and subsequent singular value decomposition of sensitivity matrices for the identification of these dominant dynamical modes. It allows for a dynamic coupling analysis of (bio)chemical species in kinetic models that can be exploited for the piecewise computation of a minimal model on small time intervals and offers valuable functional insight into highly nonlinear reaction mechanisms and network dynamics.

View Article and Find Full Text PDF

Theoretical and experimental studies related to manipulation of pattern formation in self-organizing reaction-diffusion processes by appropriate control stimuli become increasingly important both in chemical engineering and cellular biochemistry. In a model study, we demonstrate here exemplarily the application of an efficient nonlinear model predictive control (NMPC) algorithm to real-time optimal feedback control of pattern formation in a bacterial chemotaxis system modeled by nonlinear partial differential equations. The corresponding drift-diffusion model type is representative for many (bio)chemical systems involving nonlinear reaction dynamics and nonlinear diffusion.

View Article and Find Full Text PDF

Self-organization behavior and in particular pattern forming spatiotemporal dynamics play an important role in far from equilibrium chemical and biochemical systems. Specific external forcing and control of self-organizing processes might be of great benefit in various applications ranging from technical systems to modern biomedical research. We demonstrate that in a cellular chemotaxis system modeled by one-dimensional reaction-diffusion equations particular forms of spatiotemporal dynamics can be induced and stabilized by controlling spatially distributed influx patterns of a chemical species as a function of time.

View Article and Find Full Text PDF

Specific catalyst design and external manipulation of surface reactions by controlling accessible physical or chemical parameters may be of great benefit for improving catalytic efficiencies and energetics, product yield, and selectivities in the field of heterogeneous catalysis. Studying a realistic spatiotemporal one-dimensional model for CO oxidation on Pt(110) we demonstrate the value and necessity of mathematical modeling and advanced numerical methods for directed external multiparameter control of surface reaction dynamics. At the model stage we show by means of optimal control techniques that species coverages can be adjusted to desired values, aperiodic oscillatory behavior for distinct coupled reaction sites can be synchronized, and overall reaction rates can be optimized by varying the surface temperature in space and time and the CO and O2 gas phase partial pressure with time.

View Article and Find Full Text PDF

Specific external control of chemical reaction systems and both dynamic control and signal processing as central functions in biochemical reaction systems are important issues of modern nonlinear science. For example nonlinear input-output behavior and its regulation are crucial for the maintainance of the life process that requires extensive communication between cells and their environment. An important question is how the dynamical behavior of biochemical systems is controlled and how they process information transmitted by incoming signals.

View Article and Find Full Text PDF