Liquid-crystal (LC) optically addressable spatial light modulators (OASLMs) allow control of the phase and amplitude of optical beams. By performing wave mixing in an OASLM, we show that coherent phase detection can be achieved for light beams passing through highly scattering media, such as foam layers with several cm thicknesses. Thanks to the adaptive response of our OASLM, the phase information on the speckle signal is transferred at the output of the OASLM to the plane wave reference beam, allowing the cleaning of optical distortions and the direct measurement of amplitude phase modulations with a small diameter single photodiode.
View Article and Find Full Text PDFWe consider the fundamental roles of frequency versus phase in parameter estimation, specifically in the Sagnac effect. We describe a novel, ultrasensitive gyroscope based on the extremely steep frequency-dependent gain of a liquid crystal light valve. We provide compelling experimental evidence that the Doppler shift is fundamental in the Sagnac effect giving clarity to a long-debated question.
View Article and Find Full Text PDFLiquid crystal light valves (LCLV) are optically addressable spatial light modulators that allow controlling the phase and amplitude properties of optical beams. We show that sub-milliseconds phase and amplitude modulations can be obtained when operating the LCLV in the transient dynamic mode by setting the working point close to the saturation of the response. Thanks to the large birefringence of the liquid crystals, this condition provides enough phase shifts to respond to the needs of several methods for optical measurement, dynamic holography, interferometry, and imaging through phase disturbing media, while providing kilohertz (kHz) speed.
View Article and Find Full Text PDFThe characterization of equilibria and their transition is fundamental in dynamic systems. Experimentally, the characterization of transitions is complex due to time scales separation, the effect of thermal fluctuations, and inherent experimental imperfections. Liquid crystal devices are derived from the manipulation of the molecular reorientation and transition between them by employing external electrical and magnetic fields.
View Article and Find Full Text PDFElectrically driven nematic liquid crystals layers are ideal contexts for studying the interactions of local topological defects, umbilical defects. In homogeneous samples the number of defects is expected to decrease inversely proportional to time as a result of defect-pair interaction law, so-called coarsening process. Experimentally, we characterize the coarsening dynamics in samples containing glass beads as spacers and show that the inclusion of such imperfections changes the exponent of the coarsening law.
View Article and Find Full Text PDF