The remediation of mixed contaminated soil is challenging as it often requires actions to minimize metal-induced risks while degrading organic contaminants. Here, the effectiveness of different bioremediation strategies, namely, rhizoremediation with native plant species, mycoremediation with Pleurotus ostreatus spent mushroom substrate, and biostimulation with organic by-products (i.e.
View Article and Find Full Text PDFMany species of are important pathogens that cause plant diseases and postharvest rots. They lead to significant economic losses in agriculture and affect human and animal health due to their capacity to produce mycotoxins. Therefore, it is necessary to study the factors that can result in an increase in .
View Article and Find Full Text PDFSoils of abandoned and vacant lands in the periphery of cities are frequently subjected to illegal dumping and can undergo degradation processes such as depletion of organic matter and nutrients, reduced biodiversity, and the presence of contaminants, which may exert an intense abiotic stress on biological communities. Mycorrhizal-assisted phytoremediation and intercropping strategies are highly suitable options for remediation of these sites. A two-year field experiment was conducted at a peri-urban site contaminated with petroleum hydrocarbons and polychlorinated biphenyls, to assess the effects of plant growth (spontaneous plant species, , and × , alone intercropped) and inoculation of a commercial arbuscular mycorrhizal and ectomycorrhizal inoculum.
View Article and Find Full Text PDFIncreasing soil loss and the scarcity of useful land requires new reusing strategies. Thus, recovery of polluted soils recovery offers a chance for economic and social regeneration. With this objective, different soil cleaning technologies have been developed during the last few decades.
View Article and Find Full Text PDFSoils contaminated by organic and inorganic pollutants like Cr(VI) and lindane, is currently a main environmental challenge. Biological strategies, such as biostimulation, bioaugmentation, phytoremediation and vermiremediation, and nanoremediation with nanoscale zero-valent iron (nZVI) are promising approaches for polluted soil health recovery. The combination of different remediation strategies might be key to address this problem.
View Article and Find Full Text PDF