In the framework of the Laser Lightning Rod project, whose aim is to show that laser-induced filaments can guide lightning discharges over considerable distances, we study over a distance of 140 m the filaments created by a laser system with J-range pulses of 1 ps duration at 1 kHz repetition rate. We investigate the spatial evolution of the multiple filamentation regime using the fundamental beam at 1030 nm or using combination with the second and third harmonics. The measurements were made using both a collimated beam and a loosely focused beam.
View Article and Find Full Text PDFLightning discharges between charged clouds and the Earth's surface are responsible for considerable damages and casualties. It is therefore important to develop better protection methods in addition to the traditional Franklin rod. Here we present the first demonstration that laser-induced filaments-formed in the sky by short and intense laser pulses-can guide lightning discharges over considerable distances.
View Article and Find Full Text PDFWe theoretically and experimentally demonstrate a new electro-optic linear approach to generate high-repetition-rate picosecond pulse trains. This simple cavity-free method is based on a temporal sinusoidal phase modulation combined with a triangular spectral phase processing. Experimental results validate the concept at repetition rates ranging from 10 GHz up to 40 GHz with the generation of background-free pulse trains made of nearly Gaussian Fourier-transform-limited pulses.
View Article and Find Full Text PDFReal-time access to the internal ultrafast dynamics of complex dissipative optical systems opens new explorations of pulse-pulse interactions and dynamic patterns. We present the first direct experimental evidence of the internal motion of a dissipative optical soliton molecule generated in a passively mode-locked erbium-doped fiber laser. We map the internal motion of a soliton pair molecule by using a dispersive Fourier-transform imaging technique, revealing different categories of internal pulsations, including vibrationlike and phase drifting dynamics.
View Article and Find Full Text PDF