In-beam PET (Positron Emission Tomography) is one of the most precise techniques for in-vivo range monitoring in hadron therapy. Our objective was to demonstrate the feasibility of a short irradiation run for range verification before a carbon-ion treatment. To do so a PMMA target was irradiated with a 220 MeV/u carbon-ion beam and annihilation coincidences from short-lived positron emitters were acquired after irradiations lasting 0.
View Article and Find Full Text PDFPurpose: A recent initiative was launched for establishing the South-East European International Institute for Sustainable Technologies (SEEIIST), which will provide a cutting-edge Hadron radiation therapy treatment and research institute for treating cancer patients with Hadron therapy (HT). To justify the initiative for building the SEEIIST facility, a study was conducted to estimate the number of patients with cancer from the SEE region that would be eligible for HT.
Methods And Materials: Two different methods for projecting the future annual cancer incidence have been applied: (1) using the International Agency on Research on Cancer@World Health Organization's (WHO) Globocan model which uses country's demographic factors, and (2) averaging the crude incidence data of 3 SEE countries with available national cancer registries, using a linear regression model of combined incidence per 100,000, and applying it to the entire SEE region.
The undeniable benefit of mentorship by experience senior mentors can meaningfully increase the breadth of their experience and contributions to society as well as address the dire inequality in global health. This model captures wisdom lost to retirement, enables opportunities for purposeful lifespan, underpins sustainable health care systems, and has the potential for building multinational partnerships.
View Article and Find Full Text PDFSpot Scanning is a well-established technique to deliver the dose with hadron therapy systems. For many years re-scanning (called also re-painting) has been used to achieve uniform dose distribution in particular for moving organs, although it leads to an increase of the treatment time. Reducing this time is a major focus of present research.
View Article and Find Full Text PDFIn ion therapy accelerator complexes the dose is delivered 'actively' by subdividing the target in equal energy layers (EELs), which are scanned by a beam spot visiting in sequence the planned spots, previously defined by the treatment planning system. Synchrotrons-based complexes have three problems: (i) the switching from the energy needed to scan one Equal Energy Layer to the next takes time, an effect that is more relevant for the very short treatment times now often required; (ii) the unavoidable 'ripples' of the quadrupoles and bending magnets currents produce large erratic time variations of the extracted current complicating the dose delivery; (iii) in case of superconducting synchrotrons, it is difficult to rapidly change the magnetic field because of the power dumped in the cold masses. These problems are mitigated in the proposed Qblique Raster Scanning procedure, in which the magnet currents of the beamlines vary in synchrony and a beam spot of continuously varying energy moves at a constant velocity in the beam direction scanning layers that are not perpendicular to it.
View Article and Find Full Text PDF