Publications by authors named "U A Boelsterli"

The host-dependent nature of idiosyncratic drug-induced liver injury (iDILI) suggests that rare genetic polymorphisms may contribute to the disease. Indeed, a few mutations in key genes have already been identified using conventional human genetics approaches. Over 50 commonly used drugs can precipitate iDILI, making this a substantial medical problem.

View Article and Find Full Text PDF

Respiratory complex I inhibition by drugs and other chemicals has been implicated as a frequent mode of mitochondria-mediated cell injury. However, the exact mechanisms leading to the activation of cell death pathways are incompletely understood. This study was designed to explore the relative contributions to cell injury of three distinct consequences of complex I inhibition, i.

View Article and Find Full Text PDF

Efavirenz (EFV) is an anti-retroviral drug frequently combined with isoniazid (INH) to treat HIV-1/tuberculosis co-infected patients. Both drugs have been associated with idiosyncratic liver injury (DILI), but combined anti-retroviral and anti-tubercular therapy can increase the risk for DILI as compared to either drug class alone. Because both EFV and INH have been implicated in targeting mitochondria, we aimed at exploring whether the two drugs might cause synergistic effects on the electron transport chain.

View Article and Find Full Text PDF

Unlabelled: Acetaminophen (APAP) overdose is a frequent cause of drug-induced liver injury and the most frequent cause of acute liver failure in the Western world. Previous studies with mouse models have revealed that impairment of mitochondrial respiration is an early event in the pathogenesis, but the exact mechanisms have remained unclear, and therapeutic approaches to specifically target mitochondria have been insufficiently explored. Here, we found that the reactive oxidative metabolite of APAP, N-acetyl-p-benzoquinoneimine (NAPQI), caused the selective inhibition of mitochondrial complex II activity by >90% in both mouse hepatic mitochondria and yeast-derived complexes reconstituted into nanoscale model membranes, as well as the decrease of succinate-driven adenosine triphosphate (ATP) biosynthesis rates.

View Article and Find Full Text PDF

Idiosyncratic drug-induced liver injury (DILI) is a significant adverse effect of antitubercular therapy with isoniazid (INH). Although the drug has been used for many decades, the underlying mode of action (both patient-specific and drug-specific mechanisms) leading to DILI are poorly understood. Among the patient-specific determinants of susceptibility to INH-associated DILI, the importance of HLA genetic variants has been increasingly recognized, whereas the role of polymorphisms of drug-metabolizing enzymes (NAT2 and CYP2E1) has become less important and remains controversial.

View Article and Find Full Text PDF