Publications by authors named "Tzu-Ming Chu"

Background: Gene expression profiling is being widely applied in cancer research to identify biomarkers for clinical endpoint prediction. Since RNA-seq provides a powerful tool for transcriptome-based applications beyond the limitations of microarrays, we sought to systematically evaluate the performance of RNA-seq-based and microarray-based classifiers in this MAQC-III/SEQC study for clinical endpoint prediction using neuroblastoma as a model.

Results: We generate gene expression profiles from 498 primary neuroblastomas using both RNA-seq and 44 k microarrays.

View Article and Find Full Text PDF

Background: The thermophilic anaerobe Clostridium thermocellum is a candidate consolidated bioprocessing (CBP) biocatalyst for cellulosic ethanol production. The aim of this study was to investigate C. thermocellum genes required to ferment biomass substrates and to conduct a robust comparison of DNA microarray and RNA sequencing (RNA-seq) analytical platforms.

View Article and Find Full Text PDF

Relative to microarrays, RNA-seq has been reported to offer higher precision estimates of transcript abundance, a greater dynamic range, and detection of novel transcripts. However, previous comparisons of the 2 technologies have not covered dose-response experiments that are relevant to toxicology. Male F344 rats were exposed for 13 weeks to 5 doses of bromobenzene, and liver gene expression was measured using both microarrays and RNA-seq.

View Article and Find Full Text PDF

The use of high-throughput in vitro assays has been proposed to play a significant role in the future of toxicity testing. In this study, rat hepatic metabolic clearance and plasma protein binding were measured for 59 ToxCast phase I chemicals. Computational in vitro-to-in vivo extrapolation was used to estimate the daily dose in a rat, called the oral equivalent dose, which would result in steady-state in vivo blood concentrations equivalent to the AC 50 or lowest effective concentration (LEC) across more than 600 ToxCast phase I in vitro assays.

View Article and Find Full Text PDF

Over the past 5 years, increased attention has been focused on using high-throughput in vitro screening for identifying chemical hazards and prioritizing chemicals for additional in vivo testing. The U.S.

View Article and Find Full Text PDF

Background: Normalization of gene expression data has been studied for many years and various strategies have been formulated to deal with various types of data. Most normalization algorithms rely on the assumption that the number of up-regulated genes and the number of down-regulated genes are roughly the same. However, the well-known Golden Spike experiment presents a unique situation in which differentially regulated genes are biased toward one direction, thereby challenging the conclusions of previous bench mark studies.

View Article and Find Full Text PDF

Gene expression data from microarrays are being applied to predict preclinical and clinical endpoints, but the reliability of these predictions has not been established. In the MAQC-II project, 36 independent teams analyzed six microarray data sets to generate predictive models for classifying a sample with respect to one of 13 endpoints indicative of lung or liver toxicity in rodents, or of breast cancer, multiple myeloma or neuroblastoma in humans. In total, >30,000 models were built using many combinations of analytical methods.

View Article and Find Full Text PDF

The process for evaluating chemical safety is inefficient, costly, and animal intensive. There is growing consensus that the current process of safety testing needs to be significantly altered to improve efficiency and reduce the number of untested chemicals. In this study, the use of short-term gene expression profiles was evaluated for predicting the increased incidence of mouse lung tumors.

View Article and Find Full Text PDF

Background: Reproducibility is a fundamental requirement in scientific experiments. Some recent publications have claimed that microarrays are unreliable because lists of differentially expressed genes (DEGs) are not reproducible in similar experiments. Meanwhile, new statistical methods for identifying DEGs continue to appear in the scientific literature.

View Article and Find Full Text PDF

Geminiviruses are small DNA viruses that use plant replication machinery to amplify their genomes. Microarray analysis of the Arabidopsis (Arabidopsis thaliana) transcriptome in response to cabbage leaf curl virus (CaLCuV) infection uncovered 5,365 genes (false discovery rate <0.005) differentially expressed in infected rosette leaves at 12 d postinoculation.

View Article and Find Full Text PDF

The mechanisms underlying defence reactions to a pathogen attack, though well studied in crop plants, are poorly understood in conifers. To analyze changes in gene transcript abundance in Pinus sylvestris L. root tissues infected by Heterobasidion annosum (Fr.

View Article and Find Full Text PDF

Background: Cell culture systems are useful in studying toxicological effects of chemicals such as Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), however little is known as to how accurately isolated cells reflect responses of intact organs. In this work, we compare transcriptional responses in livers of Sprague-Dawley rats and primary hepatocyte cells after exposure to RDX to determine how faithfully the in vitro model system reflects in vivo responses.

Results: Expression patterns were found to be markedly different between liver tissue and primary cell cultures before exposure to RDX.

View Article and Find Full Text PDF

In the absence of specific high-affinity agonists and antagonists, it has been difficult to define the target genes and biological responses attributable to many of the orphan nuclear receptors (ONRs). Indeed, it appears that many members of this receptor superfamily are not regulated by classical small molecules but rather their activity is controlled by interacting cofactors. Motivated by this finding, we have developed an approach to genetically isolate specific receptor-cofactor pairs in cells, allowing us to define the biological responses attributable to each complex.

View Article and Find Full Text PDF

Over the last decade, the introduction of microarray technology has had a profound impact on gene expression research. The publication of studies with dissimilar or altogether contradictory results, obtained using different microarray platforms to analyze identical RNA samples, has raised concerns about the reliability of this technology. The MicroArray Quality Control (MAQC) project was initiated to address these concerns, as well as other performance and data analysis issues.

View Article and Find Full Text PDF

Microarray-based expression profiling experiments typically use either a one-color or a two-color design to measure mRNA abundance. The validity of each approach has been amply demonstrated. Here we provide a simultaneous comparison of results from one- and two-color labeling designs, using two independent RNA samples from the Microarray Quality Control (MAQC) project, tested on each of three different microarray platforms.

View Article and Find Full Text PDF

External RNA controls (ERCs), although important for microarray assay performance assessment, have yet to be fully implemented in the research community. As part of the MicroArray Quality Control (MAQC) study, two types of ERCs were implemented and evaluated; one was added to the total RNA in the samples before amplification and labeling; the other was added to the copyRNAs (cRNAs) before hybridization. ERC concentration-response curves were used across multiple commercial microarray platforms to identify problematic assays and potential sources of variation in the analytical process.

View Article and Find Full Text PDF

A genome-wide location analysis method has been introduced as a means to simultaneously study protein-DNA binding interactions for a large number of genes on a microarray platform. Identification of interactions between transcription factors (TF) and genes provide insight into the mechanisms that regulate a variety of cellular responses. Drawing proper inferences from the experimental data is key to finding statistically significant TF-gene binding interactions.

View Article and Find Full Text PDF

We have previously identified a family of novel androgen receptor (AR) ligands that, upon binding, enable AR to adopt structures distinct from that observed in the presence of canonical agonists. In this report, we describe the use of these compounds to establish a relationship between AR structure and biological activity with a view to defining a rational approach with which to identify useful selective AR modulators. To this end, we used combinatorial peptide phage display coupled with molecular dynamic structure analysis to identify the surfaces on AR that are exposed specifically in the presence of selected AR ligands.

View Article and Find Full Text PDF

Somatic embryogenesis of Norway spruce (Picea abies L.) is a versatile model system to study molecular mechanisms regulating embryo development because it proceeds through defined developmental stages corresponding to specific culture treatments. Normal embryonic development involves early differentiation of proembryogenic masses (PEMs) into somatic embryos, followed by early and late embryogeny leading to the formation of mature cotyledonary embryos.

View Article and Find Full Text PDF

Consistency and coherence of gene expression data across multiple sites depends on several factors such as platform (oligo, cDNA, etc.), environmental conditions at each laboratory, and data quality. The Hepatotoxicity Working Group of the International Life Sciences Institute Health and Environmental Sciences Institute consortium on the application of genomics to mechanism-based risk assessment is investigating these factors by comparing high-density gene expression data sets generated on two sets of RNA from methapyrilene (MP) experiments conducted at Abbott Laboratories and Boehringer-Ingelheim Pharmaceuticals, Inc.

View Article and Find Full Text PDF

Motivation: Li and Wong have described some useful statistical models for probe-level, oligonucleotide array data based on a multiplicative parametrization. In earlier work, we proposed similar analysis-of-variance-style mixed models fit on a log scale. With only subtle differences in the specification of their mean and stochastic error components, a question arises as to whether these models could lead to varying conclusions in practical application.

View Article and Find Full Text PDF

An emerging issue in evolutionary genetics is whether it is possible to use gene expression profiling to identify genes that are associated with morphological, physiological, or behavioral divergence between species and whether these genes have undergone positive selection. Some of these questions were addressed in a recent study (Enard et al. 2002) of the difference in gene expression among human, chimp, and orangutan, which suggested an accelerated rate of divergence in gene expression in the human brain relative to liver.

View Article and Find Full Text PDF

We outline and describe steps for a statistically rigorous approach to analyzing probe-level Affymetrix GeneChip data. The approach employs classical linear mixed models and operates on a gene-by-gene basis. Forgoing any attempts at gene presence or absence calls, the method simultaneously considers the data across all chips in an experiment.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionnm61d9af4pg9ijqi7r963jq7ovq0g6ft): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once