Publications by authors named "Tzu-Hsing Ko"

Nanostructure CeO powders were synthesized using tea waste extract as gel precursor. The as-prepared samples were characterized by thermogravimetric analyzer (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Based on the TGA/DTG analysis, the intermediates of cerium chloride hydrates (CeCl.

View Article and Find Full Text PDF

We have analyzed protein expression in the bleached small vegetative cells of synchronous to investigate how unicellular algae lived through stress. These cells were subjected to heat treatment (46.5 °C for 1h in dark condition) and then cultured under continuous illumination for 24 h.

View Article and Find Full Text PDF

Free iron is one of the major analytical items for soil basic properties. It is also an important indicator for understanding the genesis of soil, soil classification, and soil distribution behavior. In this study, an alternative analytical method (chemisorption) based on thermodynamic knowledge was proposed for measurement of total free iron oxides in soils.

View Article and Find Full Text PDF

The objective of this study was to investigate the physical, chemical, and mineralogical composition of lateritic soils in order to use these soils as potential commercial products for industrial application in the future. Five lateritic soils derived from various parent materials in Taiwan, including andesite, diluvium, shale stone, basalt, and Pleistocene deposit, were collected from the Bt1 level of soil samples. Based on the analyses, the Tungwei soil is an alfisol, whereas other lateritic soils are ultisol.

View Article and Find Full Text PDF

Zn-Mn based sorbents supported on SiO2, gamma-Al(2)O(3) and ZrO2, prepared by the incipient wetness impregnation method with calcination at 973 K were investigated for the removal of H(2)S from coal derived gas at the temperature ranges of 773-973 K. Results reveal that the SiO2 and ZrO2 supports exhibit the better performance because better removal efficiency. The addition of manganese effectually improves the vaporization of zinc.

View Article and Find Full Text PDF

Iron-rich soil after sorption of H(2)S was characterized using X-ray absorption near-edge structural (XANES) and extended X-ray absorption fine structure spectroscopy (EXAFS) for determination the possible products in the present work. EXAFS revealed that the main Fe-S species in the sulfided sample were FeS (troilite) and Fe(1-x)S (pyrrohotite). Iron in the sulfided sample was found to possess a Fe-S bond distance of 2.

View Article and Find Full Text PDF

The synthesis of TiO2 and Fe-TiO2 by sol-gel method is demonstrated and characterized. The characterization of TiO2 and Fe-TiO2 is performed with instruments, including TGA/DTA, FTIR, UV-Vis, N2 adsorption and SEM. Dichloromethane is used for the photocatalytic activity test.

View Article and Find Full Text PDF

The purpose of this paper reported the zinc species in the highly contaminated soils from metallurgical area around Erh-Jen River in the southern of Taiwan. FTIR and XPS were used to investigate the zinc species in the contaminated soils. Through a FTIR analysis, appreciable of zinc bound by organic matter was found and their bonding structure consisted of antisymmetric and symmetric stretchings, Zn-HSsym and Zn-HSasym.

View Article and Find Full Text PDF

In this study, seven natural soils were tested for the sorption of hydrogen sulfide from coal gasification gas at high temperature. Results indicate that the LP natural soil has the best performance and the highest sulfur sorption capacity. After extracting free iron oxides, most natural soils have no sorption efficiency.

View Article and Find Full Text PDF

In this study, hydrogen sulfide (H(2)S) was removed from coal gas by red soil under high temperature in a fixed-bed reactor. Red soil powders were collected from the northern, center and southern of Taiwan. They were characterized by XRPD, porosity analysis and DCB chemical analysis.

View Article and Find Full Text PDF

Environmental catalysis also can refer to catalytic technologies for reducing emission of environmentally unacceptable compounds. Catalytic decomposition also is one of the cost-effective technologies to solve the troublesome volatile organic compounds. This study treated methyl isobutyl ketone (MIBK) by a commercial catalyst, Pt/gamma-Al(2)O(3), in an isothermal fixed bed differential reactor.

View Article and Find Full Text PDF

Catalytic oxidation is one of the cost-effective technologies to solve the troublesome volatile organic compounds. This study treated methyl-isobutyl-ketone (MIBK) by a commercial catalyst, Pt/gamma-Al(2)O(3), in a fixed-bed reactor. The effects of operating factors, such as operating temperature, MIBK concentration, space velocity, and O(2) concentration, on the performance of the catalyst were investigated.

View Article and Find Full Text PDF

Six 5 wt.% metal sorbents including Mn, Fe, Cu, Co, Ce and Zn supported on gamma-Al2O3, prepared by the incipient wetness impregnation method with calcination at 700 degrees C for 2 h, have been investigated for sorption of hydrogen sulfide in the temperature range of 500-700 degrees C. The sorption experiments were conducted in a fixed-bed reactor in terms of breakthrough curves and characterized by X-ray powder diffraction.

View Article and Find Full Text PDF