Publications by authors named "Tzu-Hsin Karen Chen"

This paper presents a remote sensing-based method to efficiently generate multi-temporal landslide inventories and identify recurrent and persistent landslides. We used free data from Landsat, nighttime lights, digital elevation models, and a convolutional neural network model to develop the first multi-decadal inventory of landslides across the Himalaya, spanning from 1992 to 2021. The model successfully delineated >265,000 landslides, accurately identifying 83 % of manually mapped landslide areas and 94 % of reported landslide events in the region.

View Article and Find Full Text PDF
Article Synopsis
  • * A study using satellite imagery and machine learning analyzed urban forms in Denmark, revealing that sprawling suburbs had the highest depression risk, while multistory buildings with nearby open spaces had the lowest.
  • * The research emphasizes the importance of urban planning that incorporates access to open spaces to help reduce depression risks in densely populated areas.
View Article and Find Full Text PDF

Mountainous regions are highly hazardous, and these hazards often lead to loss of human life. The Hindu Kush Himalaya (HKH), like many mountainous regions, is the site of multiple and overlapping natural hazards, but the distribution of multi-hazard risk and the populations exposed to it are poorly understood. Here, we present high-resolution transboundary models describing susceptibility to floods, landslides, and wildfires to understand population exposure to multi-hazard risk across the HKH.

View Article and Find Full Text PDF

Human settlement extent (HSE) information is a valuable indicator of world-wide urbanization as well as the resulting human pressure on the natural environment. Therefore, mapping HSE is critical for various environmental issues at local, regional, and even global scales. This paper presents a deep-learning-based framework to automatically map HSE from multi-spectral Sentinel-2 data using regionally available geo-products as training labels.

View Article and Find Full Text PDF