The novel coronavirus (COVID-19) pandemic, first identified in Wuhan China in December 2019, has profoundly impacted various aspects of daily life, society, healthcare systems, and global health policies. There have been more than half a billion human infections and more than 6 million deaths globally attributable to COVID-19. Although treatments and vaccines to protect against COVID-19 are now available, people continue being hospitalized and dying due to COVID-19 infections.
View Article and Find Full Text PDFHuman Papilloma Virus (HPV) is a major risk factor for the development of oropharyngeal cancer. Automatic detection of HPV in digitized pathology tissues using in situ hybridisation (ISH) is a difficult task due to the variability and complexity of staining patterns as well as the presence of imaging and staining artefacts. This paper proposes an intelligent image analysis framework to determine HPV status in digitized samples of oropharyngeal cancer tissue micro-arrays (TMA).
View Article and Find Full Text PDFUrine cytology is a test for the detection of high-grade bladder cancer. In clinical practice, the pathologist would manually scan the sample under the microscope to locate atypical and malignant cells. They would assess the morphology of these cells to make a diagnosis.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
July 2019
Recently, deep learning frameworks have been shown to be successful and efficient in processing digital histology images for various detection and classification tasks. Among these tasks, cell detection and classification are key steps in many computer-assisted diagnosis systems. Traditionally, cell detection and classification is performed as a sequence of two consecutive steps by using two separate deep learning networks: one for detection and the other for classification.
View Article and Find Full Text PDFAssessment of morphological features of megakaryocytes (MKs) (special kind of cells) in bone marrow trephine biopsies play an important role in the classification of different subtypes of Philadelphia-chromosome-negative myeloproliferative neoplasms (Ph-negative MPNs). In order to aid hematopathologists in the study of MKs, we propose a novel framework that can efficiently delineate the nuclei and cytoplasm of these cells in digitized images of bone marrow trephine biopsies. The framework first employs a supervised machine learning approach that utilizes color and texture features to delineate megakaryocytic nuclei.
View Article and Find Full Text PDF