Hepatocellular carcinoma is the third most common cause of cancer-related death according to the International Agency for Research on Cancer. Dihydroartemisinin (DHA), an antimalarial drug, has been reported to exhibit anticancer activity but with a short half-life. We synthesized a series of bile acid-dihydroartemisinin hybrids to improve its stability and anticancer activity and demonstrated that an ursodeoxycholic-DHA (UDC-DHA) hybrid was 10-fold more potent than DHA against HepG2 hepatocellular carcinoma cells.
View Article and Find Full Text PDFIn order to minimize the impacts of climate change on various crops, farmers must learn to monitor environmental conditions accurately and effectively, especially for plants that are particularly sensitive to the weather. On-site sensors and weather stations are two common methods for collecting data and observing weather conditions. Although sensors are capable of collecting accurate weather information on-site, they can be costly and time-consuming to install and maintain.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is the most common primary liver malignancy in adults and accounts for 85-90% of all primary liver cancer. Based on the estimation by the International Agency for Research on Cancer in 2018, liver cancer is the fourth leading cause of cancer death globally. Dihydroartemisinin (DHA), the main active metabolite of artemisinin derivatives, is a well-known drug for the treatment of malaria.
View Article and Find Full Text PDFA series of hybrid compounds based on natural products-bile acids and dihydroartemisinin-were prepared by different synthetic methodologies and investigated for their in vitro biological activity against HL-60 leukemia and HepG2 hepatocellular carcinoma cell lines. Most of these hybrids presented significantly improved antiproliferative activities with respect to dihydroartemisinin and the parent bile acid. The two most potent hybrids of the series exhibited a 10.
View Article and Find Full Text PDF