Background: Because of the range and nonspecificity of clinical presentations of dengue virus infections, we felt there was a need to create diagnostic tests. We used artificial receptors for the virus to develop serologic assays to detect dengue virus infection.
Methods: We coated a quartz crystal microbalance (QCM) with molecularly imprinted polymers specific for nonstructural protein 1 of flavivirus.
Molecularly imprinted film was fabricated in the presence of a pentadecapeptide onto a quartz crystal microbalance (QCM) chip. This 15-mer peptide has been known as the linear epitope of the dengue virus NS1 protein. Imprinting resulted in an increased polymer affinity toward the corresponding templates but also to the virus protein.
View Article and Find Full Text PDFBiosens Bioelectron
November 2005
The global prevalence of dengue fever has grown so dramatically in recent years that it is endemic in more than 100 countries and has become a major international public health concern. Moreover, since the flu-like symptoms that accompany dengue fever are atypical and varied, the detection procedures currently used to identify it are cumbersome and time-consuming, making early stage epidemiological control and effective medical treatment of this epidemic almost impossible. In this study, a QCM-based detection system was developed in which two monoclonal antibodies against dengue E and NS-1 protein, respectively, were control orientated immobilized on QCM via protein A to produce an immunochip.
View Article and Find Full Text PDFBased on the direct formation of a molecularly imprinted polymer on gold electrodes, we have developed a peptide sensor for the detection of low-molecular-weight peptides. A new cross-linking monomer, (N-Acr-L-Cys-NHBn)(2), was employed to attach the surface of the chip and to copolymerize with other monomers. Interestingly, N-benzylacrylamide participates in the polymerization and recognition is carried out in an aqueous environment.
View Article and Find Full Text PDF