Publications by authors named "Tze Kai Tan"

Hematopoietic stem cells (HSCs) are crucial for maintaining hematopoietic homeostasis and are localized within distinct bone marrow (BM) niches. While BM niches are often considered similar across different skeletal sites, we discovered that the alveolar BM (al-BM) in the mandible harbors the highest frequency of immunophenotypic HSCs in nine different skeletal sites. Transplantation assays revealed significantly increased engraftment from al-BM compared to femur, tibia, or pelvis BM, likely due to a higher proportion of alveolar HSCs.

View Article and Find Full Text PDF

A multitude of tools now exist that allow us to precisely manipulate the human genome in a myriad of different ways. However, successful delivery of these tools to the cells of human patients remains a major barrier to their clinical implementation. Here we introduce a new cellular approach for genetic engineering, ecreted article nformation ransfer (SPIT) that utilizes human cells as delivery vectors for genetic engineering.

View Article and Find Full Text PDF

Cancer progression is a complex process involving interactions that unfold across molecular, cellular, and tissue scales. These multiscale interactions have been difficult to measure and to simulate. Here, we integrated CODEX multiplexed tissue imaging with multiscale modeling software to model key action points that influence the outcome of T cell therapies with cancer.

View Article and Find Full Text PDF

A multitude of tools now exist that allow us to precisely manipulate the human genome in a myriad of different ways. However, successful delivery of these tools to the cells of human patients remains a major barrier to their clinical implementation. Here we introduce a new cellular approach for genetic engineering, ecreted article nformation ransfer (SPIT) that utilizes human cells as delivery vectors for genetic engineering.

View Article and Find Full Text PDF

Bacille Calmette-Guérin (BCG) vaccination can confer nonspecific protection against heterologous pathogens. However, the underlying mechanisms remain mysterious. We show that mice vaccinated intravenously with BCG exhibited reduced weight loss and/or improved viral clearance when challenged with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 B.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) are a rare type of hematopoietic cell that can entirely reconstitute the blood and immune system after transplantation. Allogeneic HSC transplantation (HSCT) is used clinically as a curative therapy for a range of hematolymphoid diseases; however, it remains a high-risk therapy because of its potential side effects, including poor graft function and graft-versus-host disease (GVHD). Ex vivo HSC expansion has been suggested as an approach to improve hematopoietic reconstitution in low-cell dose grafts.

View Article and Find Full Text PDF

Combining the sustainable culture of billions of human cells and the bioprinting of wholly cellular bioinks offers a pathway toward organ-scale tissue engineering. Traditional 2D culture methods are not inherently scalable due to cost, space, and handling constraints. Here, the suspension culture of human induced pluripotent stem cell-derived aggregates (hAs) is optimized using an automated 250 mL stirred tank bioreactor system.

View Article and Find Full Text PDF
Article Synopsis
  • Induced pluripotent stem cells (iPSCs) are derived from patient somatic cells and can help in studying diseases and regenerative medicine.
  • Current challenges in creating a diverse bank of human iPSCs (hiPSCs) include recruiting a wide range of donors with various health backgrounds.
  • This study demonstrates a method to derive transgene-free hiPSCs from small finger-prick blood samples, allowing easy at-home collection and potentially enabling large-scale hiPSC banking.
View Article and Find Full Text PDF