Publications by authors named "Tze Hau Lam"

Experimental evolution is a powerful approach for scrutinizing and dissecting the development of antimicrobial resistance; nevertheless, it typically demands an extended duration to detect evolutionary changes. Here, a centrifugal microfluidics system is designed to accelerate the process. Through a simple step of on-chip centrifugation, a highly condensed bacterial matrix of ∼10 cells/mL at the enrichment tip of the chip channel is derived, enabling bacteria encapsulated to survive in antimicrobial concentrations several times higher than the minimum inhibitory concentration (MIC) and rapidly develop resistance in the first 10 h.

View Article and Find Full Text PDF

The impact of antibacterial detergent on microbial exchanges and its subsequent effect on malodor in used towels were examined. Homogenization of microbiome among postwashed and indoor dried towels that was dominated by known malodor-producing bacteria. The microbial exchange was attenuated, and the abundance of malodor-producing bacteria was reduced in towels laundered with antibacterial detergent.

View Article and Find Full Text PDF

Objective: Erythema, characterized by the redness of the skin, is a common skin reaction triggered by various endogenous and exogenous factors. This response is often a result of the activation of underlying inflammatory mechanisms within the skin. The objective of this study is to investigate the potential benefits of applying a combination of skincare ingredients, namely allantoin, bisabolol, D-panthenol and dipotassium glycyrrhizinate (AB5D), in the modulation of inflammatory factors associated with erythema.

View Article and Find Full Text PDF

Numerous studies have investigated the effects of stannous ions on specific microbes and their efficacy in reducing dental plaque. Nonetheless, our understanding of their impact on the oral microbiome is still a subject of ongoing exploration. Therefore, this study sought to evaluate the effects of a stannous-containing sodium fluoride dentifrice in comparison to a zinc-containing sodium fluoride dentifrice and a control group on intact, healthy oral biofilms.

View Article and Find Full Text PDF

Microbiomes on surfaces in kindergartens, the intermediate transfer medium for microbial exchange, can exert significant impact on the hygiene and wellbeing of young children, both individually and as a community. Here employing 2bRAD-M, a novel species-resolved metagenomics approach for low-biomass microbiomes, we surveyed over 100 samples from seven frequently contacted surfaces by children, plus individual children's palms, in two kindergartens. Microbiome compositions, although kindergarten-specific, were grouped closely based on the type of surface within each kindergarten.

View Article and Find Full Text PDF

Background: Even though human sweat is odorless, bacterial growth and decomposition of specific odor precursors in it is believed to give rise to body odor in humans. While mechanisms of odor generation have been widely studied in adults, little is known for teenagers and pre-pubescent children who have distinct sweat composition from immature apocrine and sebaceous glands, but are arguably more susceptible to the social and psychological impact of malodor.

Results: We integrated information from whole microbiome analysis of multiple skin sites (underarm, neck, and head) and multiple time points (1 h and 8 h after bath), analyzing 180 samples in total to perform the largest metagenome-wide association study to date on malodor.

View Article and Find Full Text PDF

Human influenza virus (IAV) are among the most common pathogens to cause human respiratory infections. A better understanding on interplay between IAV and host factors may provide clues for disease prevention and control. While many viruses are known to downregulate p53 upon entering the cell to reduce the innate host antiviral response, IAV infection is unusual in that it activates p53.

View Article and Find Full Text PDF

Background & Aims: The Hepatitis B Virus (HBV) may gain entry into non-liver cells but does not actively replicate in them. We investigated the possibility that these cells possess mechanisms that block HBV core promoter (HBVCP) transcription, specifically absent in liver cells, which together with other liver-specific mechanisms, such as sodium-taurocholate cotransporting polypeptide-mediated entry, enable liver cells to effectively produce HBV.

Methods: Liver and non-liver cell lines were screened for their capacity to activate the HBVCP and synthesize pre-genomic RNA (pgRNA).

View Article and Find Full Text PDF

The control of gene regulation within the major histocompatibility complex (MHC) remains poorly understood, despite several expression quantitative trait loci (eQTL) studies revealing an association of MHC gene expression with independent tag-single nucleotide polymorphisms (SNPs). MHC haplotype variation may exert a greater effect on gene expression phenotype than specific single variants. To explore the effect of MHC haplotype sequence diversity on gene expression phenotypes across the MHC, we examined the MHC transcriptomic landscape at haplotype-specific resolution for three prominent MHC haplotypes (A2-B46-DR9, A33-B58-DR3, and A1-B8-DR3) derived from MHC-homozygous B-lymphoblastoid cell lines (B-LCLs).

View Article and Find Full Text PDF

Distinct regions of long-range genetic fixation in the human MHC region, known as conserved extended haplotypes (CEHs), possess unique genomic characteristics and are strongly associated with numerous diseases. While CEHs appear to be homogeneous by SNP analysis, the nature of fine variations within their genomic structure is unknown. Using multiple, MHC-homozygous cell lines, we demonstrate extensive sequence conservation in two common Asian MHC haplotypes: A33-B58-DR3 and A2-B46-DR9.

View Article and Find Full Text PDF

CLEVER is a computational tool designed to support the creation, manipulation, enumeration, and visualization of combinatorial libraries. The system also provides a summary of the diversity, coverage, and distribution of selected compound collections. When deployed in conjunction with large-scale virtual screening campaigns, CLEVER can offer insights into what chemical compounds to synthesize, and, more importantly, what not to synthesize.

View Article and Find Full Text PDF

Background: Selective peptide transport by the transporter associated with antigen processing (TAP) represents one of the main candidate mechanisms that may regulate the presentation of antigenic peptides to HLA class I molecules. Because TAP-binding preferences may significant impact T-cell epitope selection, there is great interest in applying computational techniques to systematically discover these elements.

Results: We describe TAP Hunter, a web-based computational system for predicting TAP-binding peptides.

View Article and Find Full Text PDF