Publications by authors named "Tze Cin OwYong"

Disorder and flexibility in protein structures are essential for biological function but can also contribute to diseases, such as neurodegenerative disorders. However, characterizing protein folding on a proteome-wide scale within biological matrices remains challenging. Here we present a method using a bifunctional chemical probe, named TME, to capture in situ, enrich and quantify endogenous protein disorder in cells.

View Article and Find Full Text PDF

α-Cyanostilbene represents one of the easily functionalized aggregation-induced emission (AIE) scaffolds. It has been widely adopted for the construction of fluorescent materials for broad applications. Here, we further expanded the utilization of α-cyanostilbene derivatives for the detection of hypoxia or proteostasis imbalance in live cells.

View Article and Find Full Text PDF
Article Synopsis
  • * Aggregation-induced emission (AIE) is a promising new concept in luminescence, offering benefits like high brightness, safety for biological use, and stability, making it suitable for medical applications.
  • * This review summarizes the use of AIE luminogens in imaging biological structures, diagnosing diseases, and monitoring specific substances, while also addressing important issues and future research directions to encourage interdisciplinary collaboration.
View Article and Find Full Text PDF

Liquid-liquid phase separation (LLPS) and liquid-solid phase transitions (LSPT) play crucial roles in biological systems, including sorting biomolecules, facilitate the transport of substrates for assembly, and accelerate the formation of metabolic and signaling complexes. Efforts towards improved characterization and quantification of phase separated species remain of outstanding interest and priority. In this review, we cover recent advances and the strategies used with small molecule fluorescent probes for the study of phase separation.

View Article and Find Full Text PDF

Boronic acid protecting group chemistry powerfully enhances the versatility of Suzuki-Miyaura cross-coupling. Prominent examples include trifluoroborate salts, -methyliminodiacetic acid (MIDA) boronates, and 1,8-diaminonaphthalene boronamides. In this work, we present a bis(2-hydroxybenzyl)methylamine (BOMA) ligand that forms tridentate complexes with boronic acids much like the MIDA ligand but the deprotection is facilitated by organic acids.

View Article and Find Full Text PDF

Understanding how cells maintain the functional proteome and respond to stress conditions is critical for deciphering molecular pathogenesis and developing treatments for conditions such as neurodegenerative diseases. Efforts towards finer quantification of cellular proteostasis machinery efficiency, phase transitions and local environment changes remain a priority. Herein, we describe recent developments in fluorescence-based strategy and methodology, building on the experimental toolkit, for the study of proteostasis (protein homeostasis) in cells.

View Article and Find Full Text PDF

A series of poly(phenylene-vinylene)-based copolymers are synthesized using the Gilch method incorporating monomers with sterically bulky sidechains. The photochemical upconversion performance of these polymers as emitters are investigated using a palladium tetraphenyltetrabenzoporphyrin triplet sensitizer and MEH-PPV as reference. Increased incorporation of sterically bulky monomers leads to a reduction in the upconversion efficiency despite improved photoluminescence quantum yield.

View Article and Find Full Text PDF

Human serum albumin (HSA) is a broadly used biomarker for the diagnosis of various diseases such as chronic kidney disease. Here, a fluorescent probe TC426 with aggregation-induced emission (AIE) characteristics is reported as a sensitive and specific probe for HSA. This probe is non-emissive in aqueous solution, meanwhile it shows bright fluorescence upon interacting with HSA, which makes it applicable in detecting HSA with a high signal to noise ratio.

View Article and Find Full Text PDF

Molecular rotors exhibit fluorescence enhancement in a confined environment and thus have been used extensively in biological imaging. However, many molecular rotors suffer from small Stokes shift and self-aggregation caused quenching. In this work, we have synthesised a series of red emissive molecular rotors based on cationic α-cyanostilbene.

View Article and Find Full Text PDF

Environmental polarity is an important factor that drives biomolecular interactions to regulate cell function. Herein, a general method of using the fluorogenic probe NTPAN-MI is reported to quantify the subcellular polarity change in response to protein unfolding. NTPAN-MI fluorescence is selectively activated upon labeling unfolded proteins with exposed thiols, thereby reporting on the extent of proteostasis.

View Article and Find Full Text PDF

Collapse of the protein homeostasis (proteostasis) can lead to accumulation and aggregation of unfolded proteins, which has been found to associate with a number of disease conditions including neurodegenerative diseases, diabetes and inflammation. Here we report a maleimide-functionalized tetraphenylethene (TPE)-derivatized fluorescent dye, TPE-NMI, which shows fluorescence turn-on property upon reacting with unfolded proteins in vitro and in live cells under proteostatic stress conditions. The level of unfolded proteins can be measured by flow cytometry and visualized with confocal microscopy.

View Article and Find Full Text PDF

Fluorescent dyes with aggregation-induced emission (AIE) properties exhibit intensified emission upon aggregation. They are promising candidates to study biomolecules and cellular changes in aqueous environments when aggregation formation occurs. Here, we report a group of 9-position functionalized anthracene derivatives that were conveniently synthesized by the palladium-catalyzed Heck reaction.

View Article and Find Full Text PDF