Halide perovskite emitters are a groundbreaking class of optoelectronic materials possessing remarkable photophysical properties for diverse applications. In perovskite light emitting devices, they have achieved external quantum efficiencies exceeding 28%, showcasing their potential for next-generation solid-state lighting and ultra high definition displays. Furthermore, the demonstration of room temperature continuous-wave perovskite lasing underscores their potential for integrated optoelectronics.
View Article and Find Full Text PDFQuantum cutting (QC) allows the conversion of high-energy photons into lower-energy photons, exhibiting great potential for infrared communications. Yb-doped perovskite nanocrystals can achieve an efficient QC process with extremely high photoluminescence quantum yield (PLQY) thanks to the favorable Yb incorporation in the perovskite structure. However, conventionally used oleic acid-oleylamine-based ligand pairs cause instability issues due to highly dynamic binding to surface states that have curbed their potential applications.
View Article and Find Full Text PDFvan der Waals heterojunctions based on transition-metal dichalcogenides (TMDs) offer advanced strategies for manipulating light-emitting and light-harvesting behaviors. A crucial factor determining the light-material interaction is in the band alignment at the heterojunction interface, particularly the distinctions between type-I and type-II alignments. However, altering the band alignment from one type to another without changing the constituent materials is exceptionally difficult.
View Article and Find Full Text PDFTwo-dimensional layered organic-inorganic halide perovskites have successfully spread to diverse optoelectronic applications. Nevertheless, there remain gaps in our understanding of the interactions between organic and inorganic sublattices that form the foundation of their remarkable properties. Here, we examine these interactions using pump-probe spectroscopy and ab initio molecular dynamics simulations.
View Article and Find Full Text PDFColloidal perovskite quantum dots (PQDs) have emerged as highly promising single photon emitters for quantum information applications. Presently, most strategies have focused on leveraging quantum confinement to increase the nonradiative Auger recombination (AR) rate to enhance single-photon (SP) purity in all-inorganic CsPbBr QDs. However, this also increases the fluorescence intermittency.
View Article and Find Full Text PDFLayered two-dimensional halide perovskites (2DHPs) exhibit exciting non-equilibrium properties that allow the manipulation of energy levels through coherent light-matter interactions. Under the Floquet picture, novel quantum states manifest through the optical Stark effect (OSE) following intense subresonant photoexcitation. Nevertheless, a detailed understanding of the influence of strong many-body interactions between excitons on the OSE in 2DHPs remains unclear.
View Article and Find Full Text PDFHarnessing quantum confinement (QC) effects in semiconductors to retard hot carrier cooling (HCC) is an attractive approach for enabling efficient hot carrier extraction to overcome the Shockley-Queisser limit. However, there is a debate about whether halide perovskite nanocrystals (PNCs) can effectively exploit these effects. To address this, we utilized pump-probe and multipulse pump-push-probe spectroscopy to investigate HCC behavior in PNCs of varying sizes and cation compositions.
View Article and Find Full Text PDFCarrier multiplication (CM) holds great promise to break the Shockley-Queisser limit of single junction photovoltaic cells. Despite compelling spectroscopic evidence of strong CM effects in halide perovskites, studies in actual perovskite solar cells (PSCs) are lacking. Herein, we reconcile this knowledge gap using the testbed CsFAMAPbSnI system exhibiting efficient CM with a low threshold of 2E (~500 nm) and high efficiency of 99.
View Article and Find Full Text PDFSemi-transparent perovskite solar cells (ST-PSCs) have attracted enormous attention recently due to their potential in building-integrated photovoltaic. To obtain adequate average visible transmittance (AVT), a thin perovskite is commonly employed in ST-PSCs. While the thinner perovskite layer has higher transparency, its light absorption efficiency is reduced, and the device shows lower power conversion efficiency (PCE).
View Article and Find Full Text PDFOrganic-inorganic halide perovskites are interesting candidates for solar cell and optoelectronic applications owing to their advantageous properties such as a tunable band gap, low material cost, and high charge carrier mobilities. Despite making significant progress, concerns about material stability continue to impede the commercialization of perovskite-based technology. In this article, we investigate the impact of environmental parameters on the alteration of structural properties of MAPbI (CHNHPbI) thin films using microscopy techniques.
View Article and Find Full Text PDFPhoton-mediated interactions within an excited ensemble of emitters can result in Dicke superradiance, where the emission rate is greatly enhanced, manifesting as a high-intensity burst at short times. The superradiant burst is most commonly observed in systems with long-range interactions between the emitters, although the minimal interaction range remains unknown. Here, we put forward a new theoretical method to bound the maximum emission rate by upper bounding the spectral radius of an auxiliary Hamiltonian.
View Article and Find Full Text PDFA fundamental understanding of the hot-carrier dynamics in halide perovskites is crucial for unlocking their prospects for next generation photovoltaics. Presently, a coherent picture of the hot carrier cooling process remains patchy due to temporally overlapping contributions from many-body interactions, multi-bands, band gap renormalization, Burstein-Moss shift etc. Pump-push-probe (PPP) spectroscopy recently emerges as a powerful tool complementing the ubiquitous pump-probe (PP) spectroscopy in the study of hot-carrier dynamics.
View Article and Find Full Text PDFHalide perovskites (HPs) are potential game-changing materials for a broad spectrum of optoelectronic applications ranging from photovoltaics, light-emitting devices, lasers to radiation detectors, ferroelectrics, thermoelectrics, etc. Underpinning this spectacular expansion is their fascinating photophysics involving a complex interplay of carrier, lattice, and quasi-particle interactions spanning several temporal orders that give rise to their remarkable optical and electronic properties. Herein, we critically examine and distill their dynamical behavior, collective interactions, and underlying mechanisms in conjunction with the experimental approaches.
View Article and Find Full Text PDFCoherent optical manipulation of exciton states provides a fascinating approach for quantum gating and ultrafast switching. However, their coherence time for incumbent semiconductors is highly susceptible to thermal decoherence and inhomogeneous broadening effects. Here, we uncover zero-field exciton quantum beating and anomalous temperature dependence of the exciton spin lifetimes in CsPbBr perovskite nanocrystals (NCs) ensembles.
View Article and Find Full Text PDFThe power conversion efficiency (PCE) of the state-of-the-art large-area slot-die-coated perovskite solar cells (PSCs) is now over 19%, but issues with their stability persist owing to significant intrinsic point defects and a mass of surface imperfections introduced during the fabrication process. Herein, the utilization of a hydrophobic all-organic salt is reported to modify the top surface of large-area slot-die-coated methylammonium (MA)-free halide perovskite layers. Bearing two molecules, each of which is endowed with anchoring groups capable of exhibiting secondary interactions with the perovskite surfaces, the organic salt acts as a molecular lock by effectively binding to both anion and cation vacancies, substantially enhancing the materials' intrinsic stability against different stimuli.
View Article and Find Full Text PDFAttempts to develop photocatalysts for hydrogen production from water usually result in low efficiency. Here we report the finding of photocatalysts by integrated interfacial design of stable covalent organic frameworks. We predesigned and constructed different molecular interfaces by fabricating ordered or amorphous π skeletons, installing ligating or non-ligating walls and engineering hydrophobic or hydrophilic pores.
View Article and Find Full Text PDFMixed-dimensional perovskites containing mixtures of organic cations hold great promise to deliver highly stable and efficient solar cells. However, although a plethora of relatively bulky organic cations have been reported for such purposes, a fundamental understanding of the materials' structure, composition, and phase, along with their correlated effects on the corresponding optoelectronic properties and degradation mechanism remains elusive. Herein, we systematically engineer the structures of bulky organic cations to template low-dimensional perovskites with contrasting inorganic framework dimensionality, connectivity, and coordination deformation.
View Article and Find Full Text PDFImpulsive light excitation presents a powerful tool for investigating the interdependent structural and electronic responses in layered two-dimensional (2D) halide perovskites. However, detailed understanding of the nonlinear lattice dynamics in these soft hybrid materials remains limited. Here, we explicate the intrinsic strain propagation mechanisms in 2D perovskite single crystals using transient reflection spectroscopy.
View Article and Find Full Text PDFCarrier diffusion and surface recombination are key processes influencing the performance of conventional semiconductor devices. However, the interplay of photon recycling together with these processes in halide perovskites obfuscates our understanding. Herein, we discern these inherent processes in a thin FAPbBr perovskite single crystal (PSC) utilizing a unique transient reflectance technique that allows accurate diffusion modeling with clear boundary conditions.
View Article and Find Full Text PDFMultiquantum-well (MQW) perovskite is one of the forerunners in high-efficiency perovskite LED (PeLEDs) research. Despite the rapid inroads, PeLEDs suffer from the pertinent issue of efficiency decrease with increasing brightness, commonly known as "efficiency roll-off". The underlying mechanisms are presently an open question.
View Article and Find Full Text PDFDefect management strategies are vital for enhancing the performance of perovskite-based optoelectronic devices, such as perovskite-based light-emitting diodes (PeLEDs). As additives can fucntion both as acrystallization modifier and/or defect passivator, a thorough study on the roles of additives is essential, especially for blue emissive Pe-LEDs, where the emission is strictly controlled by the -domain distribution of the Ruddlesden-Popper (RP, LAPbX, where L refers to a bulky cation, while A and X are monovalent cation, and halide anion, respectively) perovskite films. Of the various additives that are available, octyl phosphonic acid (OPA) is of immense interest because of its ability to bind with uncoordinated Pb ( notorious for nonradiative recombination) and therefore passivates them.
View Article and Find Full Text PDFHybrid organic-inorganic lead halide perovskite nanoparticles are promising candidates for optoelectronic applications. This investigation describes the structural and optical properties of MA Cs PbBr mixed cation colloidal nanoparticles spanning the complete compositional range of Cs substitution. A monotonic progression in the cubic lattice parameter () with changes in the Cs content confirmed the formation of mixed cation materials.
View Article and Find Full Text PDFPerovskite light-emitting diodes (PeLEDs) have recently shown significant progress with external quantum efficiencies (EQEs) exceeding 20%. However, PeLEDs with pure-red (620-660 nm) light emission, an essential part for full-color displays, remain a great challenge. Herein, a general approach of spacer cation alloying is employed in Ruddlesden-Popper perovskites (RPPs) for efficient red PeLEDs with precisely tunable wavelengths.
View Article and Find Full Text PDFHeterostructures, combining perovskite nanocrystals (PNC) and chalcogenide quantum dots, could pave a path to optoelectronic device applications by enabling absorption in the near-infrared region, tailorable electronic properties, and stable crystal structures. Ideally, the heterostructure host material requires a similar lattice constant as the guest which is also constrained by the synthesis protocol and materials selectivity. Herein, we present an efficient one-pot hot-injection method to synthesize colloidal all-inorganic cesium lead halide-lead sulfide (CsPbX (X = Cl, Br, I)-PbS) heterostructure nanocrystals (HNCs) via the epitaxial growth of the perovskite onto the presynthesized PbS nanocrystals (NCs).
View Article and Find Full Text PDFAntimony sulfoselenide (Sb (S,Se) ) is a promising photoabsorber for stable and high efficiency thin film photovoltaics (PV). The unique quasi-1D (Q1D) crystal structure gives Sb (S,Se) intriguing anisotropic optoelectronic properties, which intrinsically require the optimization of crystal growth orientation, especially for electronic devices with vertical charge transport such as solar cells. Although the efficiency of Sb (S,Se) solar cells has been improved greatly through optimizing the material quality, the fundamental issue of crystal orientation control in polycrystalline films remains unsolved, resulting in charge carrier recombination losses in the device.
View Article and Find Full Text PDF