Prenatal hypoxia, often accompanied by maternal glucocorticoid stress, can predispose offspring to neurological disorders in adulthood. If placental ischemia (PI) primarily reduces fetal oxygen supply, the maternal hypoxia (MH) model also elicits a pronounced fetal glucocorticoid exposure. Here, we compared MH and PI in rats to distinguish their unique and overlapping effects on embryonic and newborn brain development.
View Article and Find Full Text PDFPrevious studies have shown that the combined effect of fetal hypoxia and maternal stress hormones predetermines tendency to nicotine addiction in adulthood. This study in rats aimed to investigate the effect of prenatal severe hypoxia (PSH) on acetylcholine metabolism in the developing brain, as well as on expression of acetylcholine receptors and in both the developing brain and adult brain structures following nicotine consumption. In the developing brain of PSH rats, no changes were found in the activity of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) or disturbances in the acetylcholine levels.
View Article and Find Full Text PDFFetal hypoxia and maternal stress frequently culminate in neuropsychiatric afflictions in life. To replicate this condition, we employed a model of prenatal severe hypoxia (PSH) during days 14-16 of rat gestation. Subsequently, both control and PSH rats at 3 months old were subjected to episodes of inescapable stress to induce learned helplessness (LH).
View Article and Find Full Text PDFIntroduction: Previous studies have shown that fetal hypoxia predisposes individuals to develop addictive disorders in adulthood. However, the specific impact of maternal stress, mediated through glucocorticoids and often coexisting with fetal hypoxia, is not yet fully comprehended.
Methods: To delineate the potential effects of these pathological factors, we designed models of prenatal severe hypoxia (PSH) in conjunction with maternal stress and prenatal intrauterine ischemia (PII).
Introduction: Many socially significant diseases are associated with prenatal developmental disorders. Previously, we showed the pathological role of hypoxia-inducible factor-1 (HIF1) in post-hypoxic reoxygenation. This study aimed to investigate the effect of prenatal severe hypoxia (PSH) on HIF1α protein expression as well as on HIF1-dependent activity of the pentose phosphate pathway (PPP) and anaerobic glycolysis in the hippocampus (HPC) of offspring that reached adulthood.
View Article and Find Full Text PDFThe effects of prenatal hypoxia on neurodevelopment are predominantly associated with impaired maternal glucocorticoid stimulation of the fetus, which is "imprinted" in altered sensitivity of glucocorticoid reception in brain structures of offspring and can affect brain plasticity during lifespan. This study aimed to investigate response of the brain glucocorticoid system to mild stress (MS) in adult rats that survived prenatal severe hypoxia (PSH) on embryonic days 14-16. In response to MS the control (but not PSH) rats demonstrate increased corticosterone levels, a decrease in exploratory activity and increased anxiety.
View Article and Find Full Text PDFThe role of damaging factors in the prenatal period as a basis for drug addiction in offspring is of great interest. In this study, we aim at deciphering the effects and possible mechanisms of prenatal severe hypoxia (PSH) on predisposition to nicotine addiction in adult rats. In PSH rats, we found an increasing tendency to nicotine consumption in the two-bottle choice test.
View Article and Find Full Text PDFIntroduction: Prenatal hypoxia is a risk factor for the development of numerous neurological disorders. It is known that the maternal stress response to hypoxia determines the epigenetic impairment of the perinatal expression of glucocorticoid receptors (GR) in the hippocampus of the progeny, but so far no detailed study of how this affects the functional state of the glucocorticoid system during further ontogenesis has been performed.
Objective: The goal of the present study was to examine the long-term effects of the prenatal hypoxia on the functioning of the glucocorticoid system throughout life.
Prenatal hypoxia is among leading causes of progressive brain pathologies in postnatal life. This study aimed to analyze the characteristics of the hippocampal glutamatergic system and behavior of rats in early (2 weeks), adult (3 months) and advanced (18 months) postnatal ontogenesis after exposure to prenatal severe hypoxia (PSH, 180 Torr, 5% O2, 3 h) during the critical period in the formation of the hippocampus (days 14-16 of gestation). We have shown an age-dependent progressive decrease in the hippocampal glutamate levels, a decrease of the neuronal cell number in the CA1 hippocampal region, as well as impairment of spatial long-term memory in the Morris water navigation task.
View Article and Find Full Text PDFThe pentose phosphate pathway (PPP) of glucose metabolism in the brain serves as a primary source of NADPH which in turn plays a crucial role in multiple cellular processes, including maintenance of redox homeostasis and antioxidant defense. In our model of protective mild hypobaric hypoxia in rats (3MHH), an inverse correlation between hypoxia-inducible factor-1 (HIF1) activity and mRNA levels of glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of PPP, was observed. In the present study, it was demonstrated that severe hypobaric hypoxia (SH) induced short-term upregulation of HIF1 alpha-subunit (HIF1α) in the hippocampal CA1 subfield and decreased the activity of G6PD.
View Article and Find Full Text PDFPost-conditioning is exposure of an injured organism to the same harmful factors but of milder intensity which mobilizes endogenous protective mechanisms. Recently, we have developed a novel noninvasive post-conditioning (PostC) protocol involving three sequential episodes of mild hypobaric hypoxia which exerts pronounced neuroprotective action. In particular, it prevents development of pathological cascades caused by severe hypobaric hypoxia (SH) such as cellular loss, lipid peroxidation, abnormal neuroendocrine responses and behavioural deficit in experimental animals.
View Article and Find Full Text PDFThe present study was aimed at the analysis of spatial learning abilities in the Morris water maze (working memory) as well as hippocampal levels of phosphatidylinositol 4,5-diphosphates (TPI), phosphatidylinositol 4-phosphates (DPI), phosphotidylinositols (MPI), and expression of the type 1 inositol 1,4,5-trisphosphate receptor (IR3R1) in rats exposed to severe hypobaric hypoxia (ascent to 11 km, 3 h) on prenatal days 14-16 (group 1) or 17-19 (group 2). Exposure to severe hypoxia led to significant elevation of TP 1 and DPI hippocampal levels in juvenile and adult rats in the group 1, however these changes were more pronounced in juvenile rats than in adults. In the group 2, hypoxia up-regulated TPI and DPI hippocampal levels in juvenile rats, but in adult animals of this group just a small TPI level up-regulation was detected.
View Article and Find Full Text PDFThe effect of moderate hypobaric hypoxia on the expression of a peptide antioxidant Cu,Zn-superoxide dismutase in rat hippocampal neurons was evaluated in an immunocytochemical study. The expression of Cu,Zn-superoxide dismutase decreased significantly in the dorsal hippocampus (CA1 and CA2) and tended to decrease in ventral regions (CA3 and dentate gyrus) by the 24th hour after 3-fold exposure to hypoxia.
View Article and Find Full Text PDFCa(2+)-mediated signal transduction of group I metabotropic glutamate receptors (ImGluR) was studied in the brain of young (15 days) and old rats (90 days) exposed to severe hypobaric hypoxia on gestation days 14-16. Changes in the concentration of bound intracellular Ca(2+) (Ca(2+) response) were evaluated after repeated application of a selective ImGluR agonist 3,5-dihydroxyphenylglycine (DHPG) to cultured brain slices. Primary application of DHPG for 2 min induced a negative Ca(2+) response in slices from 15-day-old intact animals, while repeated application caused a positive response.
View Article and Find Full Text PDFPreconditioning using three sessions of moderate hypobaric hypoxia, i.e., hypoxic preconditioning (HP), increased the tolerance of susceptible brain neurons to severe hypoxia and other harmful factors.
View Article and Find Full Text PDFTranscription factors c-Fos and NGFI-A encoded by immediate early genes largely participate in the biochemical cascade leading to genomically driven lasting adaptation by neurons to injurious exposures including hypoxia/ischemia. Present study was designed to examine the involvement of c-Fos and NGFI-A in the development of brain hypoxic tolerance induced by mild hypoxic preconditioning. Earlier we have reported that preconditioning by repetitive mild hypobaric hypoxia (MHH) considerably increases neuronal resistance to subsequent severe injurious exposures.
View Article and Find Full Text PDFNeurosci Behav Physiol
January 2009
Previous studies have demonstrated that preconditioning (PC) with three sessions of moderate hypoxia significantly increases the expression of the antioxidant protein thioredoxin-1 (Trx-1) in the rat hippocampus by 3 h after subsequent acute severe hypoxia as compared with non-preconditioned animals. However, it remained unclear whether this increase in Trx-1 accumulation during PC is induced before severe hypoxia or is a modification of the response to severe hypoxia. This question was addressed in the present investigation using experiments on 12 adult male Wistar rats with studies of Trx-1 expression after PC without subsequent severe hypoxia.
View Article and Find Full Text PDFNeurosci Behav Physiol
September 2008
The protective effects of hypoxic preconditioning on the development of depressive states in rat models were studied. Three episodes of intermittent preconditioning using hypobaric hypoxia (360 mmHg, 2 h) prevented the onset of depressive behavioral reactions, hyperfunction of the hypophyseal-adrenal system, and impairments in its suppression in the dexamethasone test in rats following unavoidable aversive stress in a model of endogenous depression. The anxiolytic and antidepressant actions of hypoxic preconditioning in experiments on rats were no less marked than those of the tetracyclic antidepressant ludiomil.
View Article and Find Full Text PDFWe studied the effect of in vivo hypobaric hypoxia on the development (after 3 h) of in vitro long-term posttetanic potentiation in Wistar rats. Severe hypoxia suppressed induction of posttetanic potentiation in slices of the olfactory cortex. Preconditioning exposure (moderate hypobaric hypoxia) prevented inhibition of posttetanic potentiation induced by severe hypoxia.
View Article and Find Full Text PDFThe Nissl method and immunocytochemistry were used to study the effects of severe hypobaric hypoxia and its actions in combination with the preconditioning actions of moderate hypoxia on the expression of the early gene proteins c-Fos and NGFI-A as well as structural changes in hippocampal and neocortical neurons in the rat brain. Severe hypoxia was found to suppress c-Fos and NGFI-A synthesis (3-24 h after exposure) and to induce delayed (days 3-7) structural damage to neurons, of the "light" and predominantly the "dark" types, which appear to reflect the development of necrotic and apoptotic processes respectively. Preconditioning with the regime used here corrected these derangements, resulting in increases in the expression of early gene proteins and significant reductions in structural damage to neurons after severe hypoxia.
View Article and Find Full Text PDFNeurosci Behav Physiol
January 2003
Prophylactic transient hypoxia (preconditioning) increased neuron resistance to subsequent induction of severe hypoxia. Published data and results obtained by the authors on the molecular-cellular mechanisms of hypoxic preconditioning are presented. The roles of intracellular signal transduction, genome function, stress proteins, and neuromodulatory peptides in this process are discussed.
View Article and Find Full Text PDFWe studied the effect of in vivo exposure to hypobaric hypoxia of different depth on the resistance of neurons in brain slices to 10-min anoxia in vitro. Severe hypoxia simulating ascent to 11,000 m above sea level potentiated the adverse effect of 10-min anoxia and caused profound suppression of synaptic transmission. Moderate preconditioning hypoxia simulating ascent to 5000 m above sea level produced a long-lasting protective effect on synaptic activity.
View Article and Find Full Text PDF