Publications by authors named "Tyson Woods"

A diverse group of RNA viruses have the ability to gain access to the central nervous system (CNS) and cause severe neurological disease. Current treatment for people with this type of infection is generally limited to supportive care. To address the need for reliable antivirals, we utilized a strategy of lethal mutagenesis to limit virus replication.

View Article and Find Full Text PDF

Inflammatory monocytes (iMO) are recruited from the bone marrow to the brain during viral encephalitis. C-C motif chemokine receptor (CCR) 2 deficiency substantially reduces iMO recruitment for most, but not all encephalitic viruses. Here we show CCR7 acts synergistically with CCR2 to control this process.

View Article and Find Full Text PDF

A number of viruses, including Herpes Simplex Virus (HSV), West Nile Virus (WNV), La Crosse Virus (LACV), Zika virus (ZIKV) and Tick-borne encephalitis virus (TBEV), have the ability to gain access to the central nervous system (CNS) and cause severe neurological disease or death. Although encephalitis cases caused by these viruses are generally rare, there are relatively few treatment options available for patients with viral encephalitis other than palliative care. Many of these viruses directly infect neurons and can cause neuronal death.

View Article and Find Full Text PDF

La Crosse virus (LACV) is a mosquito-borne orthobunyavirus that causes approximately 60 to 80 hospitalized pediatric encephalitis cases in the United States yearly. The primary treatment for most viral encephalitis, including LACV, is palliative care, and specific antiviral therapeutics are needed. We screened the National Center for Advancing Translational Sciences library of 3,833 FDA-approved and bioactive small molecules for the ability to inhibit LACV-induced death in SH-SY5Y neuronal cells.

View Article and Find Full Text PDF

Background: A key factor in the development of viral encephalitis is a virus crossing the blood-brain barrier (BBB). We have previously shown that age-related susceptibility of mice to the La Crosse virus (LACV), the leading cause of pediatric arbovirus encephalitis in the USA, was associated with the ability of the virus to cross the BBB. LACV infection in weanling mice (aged around 3 weeks) results in vascular leakage in the olfactory bulb/tract (OB/OT) region of the brain, which is not observed in adult mice aged > 6-8 weeks.

View Article and Find Full Text PDF

It is well understood that the adaptive immune response to infectious agents includes a modulating suppressive component as well as an activating component. We now show that the very early innate response also has an immunosuppressive component. Infected cells upregulate the CD47 "don't eat me" signal, which slows the phagocytic uptake of dying and viable cells as well as downstream antigen-presenting cell (APC) functions.

View Article and Find Full Text PDF

Background: La Crosse virus (LACV) is the leading cause of pediatric arboviral encephalitis in the USA. LACV encephalitis can result in learning and memory deficits, which may be due to infection and apoptosis of neurons in the brain. Despite neurons being the primary cell infected in the brain by LACV, little is known about neuronal responses to infection.

View Article and Find Full Text PDF

Inflammatory monocyte (iMO) recruitment to the brain is a hallmark of many neurologic diseases. Prior to entering the brain, iMOs must egress into the blood from the bone marrow through a mechanism, which for known encephalitic viruses, is CCR2 dependent. In this article, we show that during La Crosse Virus-induced encephalitis, egress of iMOs was surprisingly independent of CCR2, with similar percentages of iMOs in the blood and brain of heterozygous and CCR2 mice following infection.

View Article and Find Full Text PDF

Although Zika virus (ZIKV) is primarily transmitted to humans by the Aedes aegypti mosquito, human-to-human transmission has also been observed from males-to-females as well as mother-to-offspring. In the current study, we studied both sexual transmission (STx) and vertical transmission (VTx) of ZIKV using anti-IFNAR1-treatment of Rag1 (AIR) mice. These mice have suppressed type I IFN responses and lack adaptive immune responses, leading to a prolonged infection prior to clinical disease.

View Article and Find Full Text PDF

Background: La Crosse Virus (LACV) is a primary cause of pediatric viral encephalitis in the USA and can result in severe clinical outcomes. Almost all cases of LACV encephalitis occur in children 16 years or younger, indicating an age-related susceptibility. This susceptibility is recapitulated in a mouse model where weanling (3 weeks old or younger) mice are susceptible to LACV-induced disease, and adults (greater than 6 weeks) are resistant.

View Article and Find Full Text PDF

The recent association between Zika virus (ZIKV) and neurologic complications, including Guillain-Barré syndrome in adults and CNS abnormalities in fetuses, highlights the importance in understanding the immunological mechanisms controlling this emerging infection. Studies have indicated that ZIKV evades the human type I IFN response, suggesting a role for the adaptive immune response in resolving infection. However, the inability of ZIKV to antagonize the mouse IFN response renders the virus highly susceptible to circulating IFN in murine models.

View Article and Find Full Text PDF

Unlabelled: Although all 12 subtypes of human interferon alpha (IFN-α) bind the same receptor, recent results have demonstrated that they elicit unique host responses and display distinct efficacies in the control of different viral infections. The IFN-α2 subtype is currently in HIV-1 clinical trials, but it has not consistently reduced viral loads in HIV-1 patients and is not the most effective subtype against HIV-1 in vitro We now demonstrate in humanized mice that, when delivered at the same high clinical dose, the human IFN-α14 subtype has very potent anti-HIV-1 activity whereas IFN-α2 does not. In both postexposure prophylaxis and treatment of acute infections, IFN-α14, but not IFN-α2, significantly suppressed HIV-1 replication and proviral loads.

View Article and Find Full Text PDF

Misfolding and aggregation of host proteins are important features of the pathogenesis of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, frontotemporal dementia and prion diseases. In all these diseases, the misfolded protein increases in amount by a mechanism involving seeded polymerization. In prion diseases, host prion protein is misfolded to form a pathogenic protease-resistant form, PrPSc, which accumulates in neurons, astroglia and microglia in the CNS.

View Article and Find Full Text PDF

Inhibition of microglia activation may provide therapeutic treatment for many neurodegenerative diseases. Astragaloside IV (ASI) with anti-inflammatory properties has been tested as a therapeutic drug in clinical trials of China. However, the mechanism of ASI inhibiting neuroinflammation is unknown.

View Article and Find Full Text PDF

Unlabelled: Monocyte infiltration into the CNS is a hallmark of several viral infections of the central nervous system (CNS), including retrovirus infection. Understanding the factors that mediate monocyte migration in the CNS is essential for the development of therapeutics that can alter the disease process. In the current study, we found that neuropeptide Y (NPY) suppressed monocyte recruitment to the CNS in a mouse model of polytropic retrovirus infection.

View Article and Find Full Text PDF

Neuronal apoptosis is a key aspect of many different neurologic diseases, but the mechanisms remain unresolved. Recent studies have suggested a mechanism of innate immune-induced neuronal apoptosis through the stimulation of endosomal TLRs in neurons. TLRs are stimulated both by pathogen-associated molecular patterns as well as by damage-associated molecular patterns, including microRNAs released by damaged neurons.

View Article and Find Full Text PDF

The activation of astrocytes and microglia is often associated with diseases of the central nervous system (CNS). Understanding how activation alters the transcriptome of these cells may offer valuable insight regarding how activation of these cells mediate neurological damage. Furthermore, identifying common and unique pathways of gene expression during activation may provide new insight into the distinct roles these cells have in the CNS during infection and inflammation.

View Article and Find Full Text PDF

Unlabelled: La Crosse virus (LACV) is the major cause of pediatric viral encephalitis in the United States; however, the mechanisms responsible for age-related susceptibility in the pediatric population are not well understood. Our current studies in a mouse model of LACV infection indicated that differences in myeloid dendritic cell (mDC) responses between weanling and adult mice accounted for susceptibility to LACV-induced neurological disease. We found that type I interferon (IFN) responses were significantly stronger in adult than in weanling mice.

View Article and Find Full Text PDF

Background: The perinatal period is one in which the mammalian brain is particularly vulnerable to immune-mediated damage. Early inflammation in the central nervous system (CNS) is linked with long-term impairment in learning and behavior, necessitating a better understanding of mediators of neuroinflammation. We therefore directly examined how age affected neuroinflammatory responses to pathogenic stimuli.

View Article and Find Full Text PDF

La Crosse virus (LACV), a zoonotic Bunyavirus, is a major cause of pediatric viral encephalitis in the United States. A hallmark of neurological diseases caused by LACV and other encephalitic viruses is the induction of neuronal cell death. Innate immune responses have been implicated in neuronal damage, but no mechanism has been elucidated.

View Article and Find Full Text PDF

Toll-like receptor 7 (TLR7) recognizes guanidine-rich viral ssRNA and is an important mediator of peripheral immune responses to several ssRNA viruses. However, the role that TLR7 plays in regulating the innate immune response to ssRNA virus infections in specific organs such as the central nervous system (CNS) is not as clear. This study examined the influence of TLR7 on the neurovirulence of Langat virus (LGTV), a ssRNA tick-borne flavivirus.

View Article and Find Full Text PDF

The functional role of murine TLR8 in the inflammatory response of the central nervous system (CNS) remains unclear. Murine TLR8 does not appear to respond to human TLR7/8 agonists, due to a five amino acid deletion in the ectodomain. However, recent studies have suggested that murine TLR8 may be stimulated by alternate ligands, which include vaccinia virus DNA, phosphothioate oligodeoxynucleotides (ODNs) or the combination of phosphothioate poly-thymidine oligonucleotides (pT-ODNs) with TLR7/8 agonists.

View Article and Find Full Text PDF

Toll-like receptors (TLRs) 7 and 9 recognize nucleic acid determinants from viruses and bacteria and elicit the production of type I interferons and proinflammatory cytokines. TLR7 and TLR9 are similar regarding localization and signal transduction mechanisms. However, stimulation of these receptors has differing effects in modulating viral pathogenesis and in direct toxicity in the central nervous system (CNS).

View Article and Find Full Text PDF

Viral infections in the central nervous system (CNS) can lead to neurological disease either directly by infection of neurons or indirectly through activation of glial cells and production of neurotoxic molecules. Understanding the effects of virus-mediated insults on neuronal responses and neurotrophic support is important in elucidating the underlying mechanisms of viral diseases of the CNS. In the current study, we examined the expression of neurotrophin- and neurotransmitter-related genes during infection of mice with neurovirulent polytropic retrovirus.

View Article and Find Full Text PDF

IFN-gamma (IFN-gamma) has been shown to activate astrocytes to acquire immune functions. In this study the effect of IFN-gamma on murine astrocytes was investigated via microarray analysis. The activating effect of IFN-gamma on the astrocyte transcriptome showed predominance toward pathways involved in adaptive immunity, initiation of the immune response and innate immunity.

View Article and Find Full Text PDF