Publications by authors named "Tyson Rietz"

Article Synopsis
  • - SARS-CoV-2 has evolved to evade current monoclonal antibodies (mAbs), emphasizing the need for more resilient treatments that can neutralize various viral strains.
  • - A new human mAb called VIR-7229 has shown the ability to effectively neutralize multiple variants of SARS-CoV-2 and other related viruses, due to its unique targeting of a critical viral region known as the receptor-binding motif (RBM).
  • - VIR-7229 demonstrates a high resistance to the emergence of virus escape mutants, making it a promising candidate for future therapies against evolving coronaviruses.
View Article and Find Full Text PDF
Article Synopsis
  • * The research focuses on the papain-like protease (PL) of SARS-CoV-2, a critical enzyme for viral replication and immune system evasion, making it a valuable target for drug development.
  • * A study using NMR experiments identified 77 unique hit fragments that bind to two different regions of the PL protein, representing a new class of potential inhibitors that differs chemically from existing ones.
View Article and Find Full Text PDF

WD repeat domain 5 (WDR5) is a core scaffolding component of many multiprotein complexes that perform a variety of critical chromatin-centric processes in the nucleus. WDR5 is a component of the mixed lineage leukemia MLL/SET complex and localizes MYC to chromatin at tumor-critical target genes. As a part of these complexes, WDR5 plays a role in sustaining oncogenesis in a variety of human cancers that are often associated with poor prognoses.

View Article and Find Full Text PDF

WD repeat domain 5 (WDR5) is a nuclear scaffolding protein that forms many biologically important multiprotein complexes. The WIN site of WDR5 represents a promising pharmacological target in a variety of human cancers. Here, we describe the optimization of our initial WDR5 WIN-site inhibitor using a structure-guided pharmacophore-based convergent strategy to improve its druglike properties and pharmacokinetic profile.

View Article and Find Full Text PDF

T-cell immunoglobulin and mucin domain-containing molecule 3 (TIM-3; HAVCR2) has emerged as an attractive immune checkpoint target for cancer immunotherapy. TIM-3 is a negative regulator of the systemic immune response to cancer and is expressed on several dysfunctional, or exhausted, immune cell subsets. Upregulation of TIM-3 is associated with tumor progression, poor survival rates, and acquired resistance to antibody-based immunotherapies in the clinic.

View Article and Find Full Text PDF

WD repeat domain 5 (WDR5) is a member of the WD40-repeat protein family that plays a critical role in multiple chromatin-centric processes. Overexpression of WDR5 correlates with a poor clinical outcome in many human cancers, and WDR5 itself has emerged as an attractive target for therapy. Most drug-discovery efforts center on the WIN site of WDR5 that is responsible for the recruitment of WDR5 to chromatin.

View Article and Find Full Text PDF
Article Synopsis
  • The PD-1 immune checkpoint pathway is a well-recognized target for treating cancer through immunotherapy.
  • Small molecule inhibitors could offer benefits compared to traditional antibodies, but their development has been slower.
  • Researchers are using a fragment-based approach to discover small molecule inhibitors that bind to PD-L1, with crystal structures of these compounds being analyzed.
View Article and Find Full Text PDF

There is a large unmet need for a simple, accurate, noninvasive, quantitative, and high-resolution imaging modality to detect lung fibrosis at early stage and to monitor disease progression. Overexpression of collagen is a hallmark of organ fibrosis. Here, we describe the optimization of a collagen-targeted PET probe for staging pulmonary fibrosis.

View Article and Find Full Text PDF
Article Synopsis
  • Pulmonary fibrosis is when the lungs get scarred, and it can happen for different reasons, including unknown causes.
  • Researchers created a special probe called Ga-CBP8 that can find and measure lung scarring by targeting collagen, which is a protein that builds up in damaged lungs.
  • Tests in mice showed that Ga-CBP8 worked really well to detect lung scarring and could also help monitor treatment effectiveness, suggesting it could be useful for people with pulmonary fibrosis too.
View Article and Find Full Text PDF

Unlabelled: Hepatic fibrosis is associated with an overproduction of matrix proteins and a pathological increase of liver stiffness. Noninvasive magnetic resonance (MR) quantification of matrix can be assessed with a collagen-binding molecular MR probe and stiffness by MR elastography, complementary techniques. This study used both imaging techniques to more accurately stage hepatic fibrosis in a rat model.

View Article and Find Full Text PDF

Objective: Thrombosis is a leading cause of morbidity and mortality worldwide. Current diagnostic strategies rely on imaging modalities that are specific for distinct vascular territories, but a thrombus-specific whole-body imaging approach is still missing. Moreover, imaging techniques to assess thrombus composition are underdeveloped, although therapeutic strategies may benefit from such technology.

View Article and Find Full Text PDF

Unlabelled: We recently showed the high target specificity and favorable imaging properties of 64Cu and Al18F PET probes for noninvasive imaging of thrombosis. Here, our aim was to evaluate new derivatives labeled with either with 68Ga, 111In, or 99mTc as thrombus imaging agents for PET and SPECT. In this study, the feasibility and potential of these probes for thrombus imaging was assessed in detail in 2 animal models of arterial thrombosis.

View Article and Find Full Text PDF

Background & Aims: Liver biopsy, the gold standard for assessing liver fibrosis, suffers from limitations due to sampling error and invasiveness. There is therefore a critical need for methods to non-invasively quantify fibrosis throughout the entire liver. The goal of this study was to use molecular Magnetic Resonance Imaging (MRI) of Type I collagen to non-invasively image liver fibrosis and assess response to rapamycin therapy.

View Article and Find Full Text PDF

Unlabelled: The diagnosis of deep venous thromboembolic disease is still challenging despite the progress of current thrombus imaging modalities and new diagnostic algorithms. We recently reported the high target uptake and thrombus imaging efficacy of the novel fibrin-specific PET probe (64)Cu-FBP8. Here, we tested the feasibility of (64)Cu-FBP8 PET to detect source thrombi and culprit emboli after deep vein thrombosis and pulmonary embolism (DVT-PE).

View Article and Find Full Text PDF

A Mn(II) chelating dendrimer was prepared as a contrast agent for MRI applications. The dendrimer comprises six tyrosine-derived [Mn(EDTA)(H2 O)](2-) moieties coupled to a cyclotriphosphazene core. Variable temperature (17) O NMR spectroscopy revealed a single water co-ligand per Mn(II) that undergoes fast water exchange (kex =(3.

View Article and Find Full Text PDF

Unlabelled: Thrombus formation plays a major role in cardiovascular diseases, but noninvasive thrombus imaging is still challenging. Fibrin is a major component of both arterial and venous thrombi and represents an ideal candidate for imaging of thrombosis. Recently, we showed that (64)Cu-DOTA-labeled PET probes based on fibrin-specific peptides are suitable for thrombus imaging in vivo; however, the metabolic stability of these probes was limited.

View Article and Find Full Text PDF

Background: Fibrin is a major component of arterial and venous thrombi and represents an ideal candidate for molecular imaging of thrombosis. Here, we describe imaging properties and target uptake of a new fibrin-specific positron emission tomographic probe for thrombus detection and therapy monitoring in 2 rat thrombosis models.

Methods And Results: The fibrin-binding probe FBP7 was synthesized by conjugation of a known short cyclic peptide to a cross-bridged chelator (CB-TE2A), followed by labeling with copper-64.

View Article and Find Full Text PDF

In developing targeted probes for positron emission tomography (PET) based on (64)Cu, stable complexation of the radiometal is key, and a flexible handle for bioconjugation is highly advantageous. Here, we present the synthesis and characterization of the chelator pycup and four derivatives. Pycup is a cross-bridged cyclam derivative with a pyridyl donor atom integrated into the cross-bridge resulting in a pentadentate ligand.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are working on new ways to find blood clots (thrombi) without surgery.
  • They created three special PET probes, called FBP1, FBP2, and FBP3, that help to see these clots in the body.
  • In tests with rats, FBP1 and FBP2 showed high levels in blood clots, making them good tools for imaging, while FBP3 was less effective because it was broken down faster in the body.
View Article and Find Full Text PDF