Aerodynamic models of bird flight, assuming power minimization, predict a quadratic relationship (i.e. U-shaped curve) between flapping frequency and airspeed.
View Article and Find Full Text PDFAnimals must tune their physical performance to changing environmental conditions, and the breadth of environmental tolerance may contribute to delineating the geographic range of a species. A common environmental challenge that flying animals face is the reduction of air density at high elevation and the reduction in the effectiveness of lift production that accompanies it. As a species, turkey vultures (Cathartes aura) inhabit a >3000 m elevation range, and fly considerably higher, necessitating that they accommodate for a 27% change in air density (0.
View Article and Find Full Text PDFBirds commonly exploit environmental features such as columns of rising air and vertical windspeed gradients to lower the cost of flight. These environmental subsidies may be especially important for birds that forage via continuous flight, as seen in black skimmers. These birds forage through a unique behavior, called skimming, where they fly above the water surface with their mandible lowered into the water, catching fish on contact.
View Article and Find Full Text PDFThe evolution of flight in an early winged insect ancestral lineage is recognized as a key adaptation explaining the unparalleled success and diversification of insects. Subsequent transitions and modifications to flight machinery, including secondary reductions and losses, also play a central role in shaping the impacts of insects on broadscale geographic and ecological processes and patterns in the present and future. Given the importance of insect flight, there has been a centuries-long history of research and debate on the evolutionary origins and biological mechanisms of flight.
View Article and Find Full Text PDFInsects must fly in highly variable natural environments filled with gusts, vortices, and other transient aerodynamic phenomena that challenge flight stability. Furthermore, the aerodynamic forces that support insect flight are produced from rapidly oscillating wings of time-varying orientation and configuration. The instantaneous flight forces produced by these wings are large relative to the average forces supporting body weight.
View Article and Find Full Text PDFMany bird species commonly aggregate in flocks for reasons ranging from predator defense to navigation. Available evidence suggests that certain types of flocks-the V and echelon formations of large birds-may provide a benefit that reduces the aerodynamic cost of flight, whereas cluster flocks typical of smaller birds may increase flight costs. However, metabolic flight costs have not been directly measured in any of these group flight contexts [Zhang and Lauder, , jeb245617 (2023)].
View Article and Find Full Text PDFMuch has been written about the energetic effects of animals moving in schools or flocks, but experimental results are few and often ambiguous. A new study in PLOS Biology shows that schooling greatly reduces the cost of transport for fish in turbulent flow.
View Article and Find Full Text PDFAdult moths from framily Spingidae (i.e. hawkmoths or sphinx moths) commonly feed on flower nectar through an extended proboscis, often several centimeters in length and longer than the body of the moth.
View Article and Find Full Text PDFA limiting factor in the design of smaller size uncrewed aerial vehicles is their inability to navigate through gust-laden environments. As a result, engineers have turned towards bio-inspired engineering approaches for gust mitigation techniques. In this study, the aerodynamics of a red-tailed hawk's response to variable-magnitude discrete transverse gusts was investigated.
View Article and Find Full Text PDFThe physical principles that govern the function of biological structures also mediate their evolution, but the evolutionary drivers of morphological traits within complex structures can be difficult to predict. Here, we use morphological traits measured from 1096 3-dimensional bird wing scans from 178 species to test the interaction of two frameworks for relating morphology to evolution. We examine whether the evolutionary rate (σ) and mode is dominated by the modular organization of the wing into handwing and armwing regions, and/or the relationship between trait morphology and functional output (i.
View Article and Find Full Text PDFFlight is an efficient way of transport over a unit of distance, but it can be very costly over each unit of time, and reducing flight energy expenditure is a major selective pressure in birds. The common swift (Apus apus) is one of the most aerial bird species, performing most behaviours in flight: foraging, sleeping and also drinking by regularly descending to various waterbodies and skimming over the surface. An energy-saving way to perform such touch-and-go drinking would be to strive to conserve mechanical energy, by transforming potential energy to kinetic energy during the gliding descent, touching water at high speed, and regaining height with minimal muscular work.
View Article and Find Full Text PDFKinematic measurements have been essential to the study of comparative biomechanics and offer insight into relationships between technological development and scientific progress. Here, we review the 100 year history of kinematic measurements in Journal of Experimental Biology (JEB) through eras that used film, analog video and digital video, and approaches that have circumvented the use of image capture. This history originated with the career of Sir James Gray and has since evolved over the generations of investigators that have followed.
View Article and Find Full Text PDFHummingbirds have evolved to hover and manoeuvre with exceptional flight control. This is enabled by their musculoskeletal system that successfully exploits the agile motion of flapping wings. Here, we synthesize existing empirical and modelling data to generate novel hypotheses for principles of hummingbird wing actuation.
View Article and Find Full Text PDFCold Spring Harb Protoc
February 2023
In this protocol, we discuss general techniques for tracking the three-dimensional (3D) locations of the mosquito body, wings, legs, or other features of interest using videos. Tracking data must be acquired to produce detailed kinematics of moving mosquitoes. The software of focus for this protocol, DLTdv, was chosen for its widespread use and excellent support and because it is open-source.
View Article and Find Full Text PDFA new study of flight control in Drosophila using neurogenetic methods and a virtual reality flight arena has revealed a group of descending neurons that fully activate the flight motor and steer the fly by independent regulation of the left and right wings.
View Article and Find Full Text PDFGliding animals change their body shape and posture while producing and modulating aerodynamic forces during flight. However, the combined effect of these different factors on aerodynamic force production, and ultimately the animal's gliding ability, remains uncertain. Here, we quantified the time-varying morphology and aerodynamics of complete, voluntary glides performed by a population of wild gliding lizards (Draco dussumieri) in a seven-camera motion capture arena constructed in their natural environment.
View Article and Find Full Text PDFCrepuscular mosquitoes, which swarm in low light conditions, exhibit a range of adaptations including large aspect-ratio wings, high flapping frequencies and small stroke amplitudes that taken together, facilitate the generation of wing-tones that are well-suited for acoustic communication. In the current study, we employ computational aeroacoustic modeling to conduct a comparative study of wing-tone and flight efficiency in a mosquito (male) and a similar sized flying insect: a fruit fly (). Based on this analysis, we show that pound-for-pound, a mosquito generates wing-tones that are a factor of about 3.
View Article and Find Full Text PDFThe evolution of wing morphology among birds, and its functional consequences, remains an open question, despite much attention. This is in part because the connection between form and function is difficult to test directly. To address this deficit, in prior work, we used computational modeling and sensitivity analysis to interrogate the impact of altering wing aspect ratio (AR), camber, and Reynolds number on aerodynamic performance, revealing the performance landscapes that avian evolution has explored.
View Article and Find Full Text PDFIt is generally accepted among biology and engineering communities that insects are unstable at hover. However, existing approaches that rely on direct averaging do not fully capture the dynamical features and stability characteristics of insect flight. Here, we reveal a passive stabilization mechanism that insects exploit through their natural wing oscillations: vibrational stabilization.
View Article and Find Full Text PDFThe physics of flight influences the morphology of bird wings through natural selection on flight performance. The connection between wing morphology and performance is unclear due to the complex relationships between various parameters of flight. In order to better understand this connection, we present a holistic analysis of gliding flight that preserves complex relationships between parameters.
View Article and Find Full Text PDFGliding animals traverse cluttered aerial environments when performing ecologically relevant behaviours. However, it is unknown how gliders execute collision-free flight over varying distances to reach their intended target. We quantified complete glide trajectories amid obstacles in a naturally behaving population of gliding lizards inhabiting a rainforest reserve.
View Article and Find Full Text PDFThe generation of sound from flapping (i.e. wing tones) of mosquito (Culex) wings is investigated using computational modeling.
View Article and Find Full Text PDFChimney swifts (Chaetura pelagica) are highly aerial, small, insectivorous birds well known for roosting en masse in chimneys during their autumn migration. These roosting events require hundreds to thousands of birds to enter a small opening (here 0.64 m) within a short amount of time (15-30 min).
View Article and Find Full Text PDFPursuit is a common behavior exhibited by animals chasing prey, competitors and potential mates. Because of their speed and maneuverability, dragonflies are frequently studied as a model system for biological pursuit. Most quantitative studies have focused on prey pursuits in captive environments.
View Article and Find Full Text PDFAnimal groups have emergent properties that result from simple interactions among individuals. However, we know little about why animals adopt different interaction rules because of sparse sampling among species. Here, we identify an interaction rule that holds across single and mixed-species flocks of four migratory shorebird species spanning a seven-fold range of body masses.
View Article and Find Full Text PDF