Mult Scler Relat Disord
February 2019
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune syndrome characterized by optic nerve and spinal cord inflammation. In recent years, there has been increasing awareness of NMOSD presenting concurrently with other autoimmune diseases, including myasthenia gravis (MG), systemic lupus erythematosus (SLE), Sjögren's syndrome, and sarcoidosis, among others. Whether these diseases coexist in patients due to shared susceptibility to multiple autoimmune conditions as a result of a genetic tendency toward humoral autoimmunity, or whether systemic rheumatologic diseases facilitate some aspect of NMOSD pathogenesis remains an open question.
View Article and Find Full Text PDFWe previously reported that delayed administration of the general cyclin-dependent kinase inhibitor flavopiridol following global ischemia provided transient neuroprotection and improved behavioral performance. However, it failed to provide longer term protection. In the present study, we investigate the ability of delayed flavopiridol in combination with delayed minocycline, another neuroprotectant to provide sustained protection following global ischemia.
View Article and Find Full Text PDFAdenosine A1 receptors are ubiquitous mediators of presynaptic inhibition of neurotransmission in the central nervous system, yet the signalling pathway linking A1 receptor activation and decreased neurotransmitter release remains poorly resolved. We tested the contribution of c-Jun N-terminal kinase (JNK) to adenosine A1 receptor-mediated depression of field excitatory postsynaptic potentials (fEPSPs) in area CA1 of the rat hippocampus. We found that inhibition of JNK with SP600125 or JNK inhibitor V, but not an inactive analogue, attenuated the depression of fEPSPs induced by adenosine, hypoxia, and the A1 receptor agonist N(6)-cyclopentyladenosine (CPA).
View Article and Find Full Text PDFAdenosine is arguably the most potent and widespread presynaptic modulator in the CNS, yet adenosine receptor signal transduction pathways remain unresolved. Here, we demonstrate a novel mechanism in which adenosine A1 receptor stimulation leads to p38 mitogen-activated protein kinase (MAPK) activation and contributes to the inhibition of synaptic transmission. Western blot analysis indicated that selective A1 receptor activation [with N6-cyclopentyladenosine (CPA)] resulted in rapid increases in phosphorylated p38 (phospho-p38) MAPK immunoreactivity in membrane fractions, and decreases in phospho-p38 MAPK in cytosolic fractions.
View Article and Find Full Text PDFP2X(7) receptor subunits form homomeric ATP-gated, calcium-permeable cation channels. In this study, we used Western blots and immunocytochemistry to demonstrate that P2X(7) receptors are abundant on presynaptic terminals of mossy fiber synapses in the rat hippocampus. P2X(7)-immunoreactive protein was detected using a specific P2X(7) antibody in Western blots of protein isolated from whole hippocampus and from a subcellular fraction containing mossy fiber synaptosomes.
View Article and Find Full Text PDF