A prerequisite for environmental and toxicological applications of mercury (Hg) stable isotopes in wildlife and humans is quantifying the isotopic fractionation of biological reactions. Here, we measured stable Hg isotope values of relevant tissues of giant petrels ( spp.).
View Article and Find Full Text PDFMercury concentrations in the Laurentian Great Lakes waters are among the lowest reported in the literature, while game fish concentrations approach consumption advisory limits, particularly in Lakes Superior, Huron, and Michigan, indicating efficient methylmercury transfer from water to game fish. To determine if increased transfer efficiency is evident within the lower food web, we measured (2010-2018) mercury and dissolved organic carbon (DOC) in water, and in size-sieved seston, dietary tracers (carbon and nitrogen isotope ratios), phytoplankton methylmercury bioaccumulation, and methylmercury biomagnification between increasing seston size fractions. We observed consistently low filter-passing methylmercury (<0.
View Article and Find Full Text PDFThe development of mercury (Hg) stable isotope measurements has enhanced the study of Hg sources and transformations in the environment. As a result of the mixing of inorganic Hg (iHg) and methylmercury (MeHg) species within organisms of the aquatic food web, understanding species-specific Hg stable isotopic compositions is of significant importance. The lack of MeHg isotope measurements is due to the analytical difficulty in the separation of the MeHg from the total Hg pool, with only a few methods having been tested over the past decade with varying degrees of success, and only a handful of environmentally relevant measurements.
View Article and Find Full Text PDF