Publications by authors named "Tyler Wells"

Mouse models of amyotrophic lateral sclerosis (ALS) enable testing of novel therapeutic interventions. However, treatments that have extended survival in mice have often failed to translate into human benefit in clinical trials. Compound muscle action potentials (CMAPs) are a simple neurophysiological test that measures the summation of muscle fiber depolarization in response to maximal stimulation of the innervating nerve.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is characterized by degeneration of motor neurons in the central nervous system (CNS). Mutations in the metalloenzyme SOD1 are associated with inherited forms of ALS and cause a toxic gain of function thought to be mediated by dimer destabilization and misfolding. SOD1 binds two Cu and two Zn ions in its homodimeric form.

View Article and Find Full Text PDF
Article Synopsis
  • Amyotrophic lateral sclerosis (ALS) leads to progressive death of motor neurons, typically resulting in death within 5 years of diagnosis, and the role of C-boutons in disease progression was investigated.
  • Research found that while silencing C-boutons did not change humane endpoints in mice, it significantly improved muscle innervation and behavioral capabilities when combined with swimming exercises.
  • The findings suggest that altering C-bouton activity alongside targeted training could potentially enhance mobility and quality of life for ALS patients.
View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by progressive motor neuron (MN) death that leads to muscle weakness, paralysis, and eventually death. When symptoms become clinically evident, patients and ALS model animals (mSod1 mice) have already lost a large portion of motor units, suggesting the existence of a compensatory mechanism that allows for reactively normal movement despite denervation. Furthermore, it has been shown that specialized cholinergic synapses, the C-boutons, regulate activity strength of motor output in a task dependent manner.

View Article and Find Full Text PDF

Key Points: Locomotion on land and in water requires the coordination of a great number of muscle activations and joint movements. Constant feedback about the position of own body parts in relation to the surrounding environment and the body itself (proprioception) is required to maintain stability and avoid failure. The central nervous system may follow a modular type of organization by controlling muscles in orchestrated groups (muscle synergies) rather than individually.

View Article and Find Full Text PDF