The establishment of invasive species populations can threaten the ecological balance in naïve habitats and impact agricultural production practices. Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) (old-world bollworm, OWBW) and Helicoverpa zea (corn earworm, CEW) were geographically separated prior to the 2013 report of OWBW invasion into South America. Introgression of OWBW-specific cytochrome P450 337B3 (CYP337B3) gene into CEW was repeatedly detected across South America and the Caribbean.
View Article and Find Full Text PDFAlong the Coastal Bend of Texas, the rice stink bug, Oebalus pugnax (F.), is a major pest of grain sorghum and rice that is primarily managed by insecticide applications. Reports of rice stink bug resistance to pyrethroids in Texas first surfaced in 2015 and continued to spread.
View Article and Find Full Text PDFNeonicotinoid insecticide seed treatments are commonly used in rice (Oryza sativa) production to control rice water weevil (Lisorhoptrus oryzophilus). With the use of neonicotinoid seed treatments, there is potential that honey bees (Apis mellifera) could be exposed to neonicotinoids through translocation to the pollen. Studies were conducted in 2015 and 2016 to determine the level of neonicotinoids present in flag leaves, pollen, and grain of rice.
View Article and Find Full Text PDFThe redbanded stink bug, Piezodorus guildinii (Westwood) (Hemiptera: Pentatomidae), is a significant soybean pest in the Americas, which inflicts more physical damage on soybean than other native stink bugs. Studies suggest that its heightened impact is attributed to the aggressive digestive properties of its saliva. Despite its agricultural importance, the factors driving its greater ability to degrade plant tissues have remained unexplored in a genomic evolutionary context.
View Article and Find Full Text PDFThe wide occurrence of resistance to Cry1A and Cry2A insecticidal toxins from () in the corn earworm/bollworm (Boddie) leaves the Vip3A toxin produced during the vegetative stage of as the only fully active toxin expressed in transgenic crops to control in the U.S.A.
View Article and Find Full Text PDFFoliar-applied insecticide treatments may be necessary to manage thrips in cotton (Gossypium hirsutum L.) under severe infestations or when at-planting insecticide seed treatments do not provide satisfactory protection. The most common foliar-applied insecticide is acephate.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2022
Overwintering success is an important determinant of arthropod populations that must be considered as climate change continues to influence the spatiotemporal population dynamics of agricultural pests. Using a long-term monitoring database and biologically relevant overwintering zones, we modeled the annual and seasonal population dynamics of a common pest, (Boddie), based on three overwintering suitability zones throughout North America using four decades of soil temperatures: the southern range (able to persist through winter), transitional zone (uncertain overwintering survivorship), and northern limits (unable to survive winter). Our model indicates population dynamics are hierarchically structured with continental-level effects that are partitioned into three geographic zones.
View Article and Find Full Text PDFBackground: Crops genetically engineered to make insect-killing proteins from Bacillus thuringiensis (Bt) have revolutionized management of some pests. However, the benefits of such transgenic crops are reduced when pests evolve resistance to Bt toxins. We evaluated resistance to Bt toxins and Bt cotton plants using laboratory bioassays and complementary field trials focusing on Helicoverpa zea, one of the most economically important pests of cotton and other crops in the United States.
View Article and Find Full Text PDFOne of the most economically important pests of cotton, Gossypium hirsutum L., in the midsouth region of the United States is the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois, Hemiptera: Miridae). Tarnished plant bug populations across the region have exhibited widespread resistance to numerous insecticide classes.
View Article and Find Full Text PDFWidespread field-evolved resistance of bollworm [Helicoverpa zea (Boddie)] to Cry1 and Cry2 Bt proteins has threatened the utility of Bt cotton for managing bollworm. Consequently, foliar insecticide applications have been widely adopted to provide necessary additional control. Field experiments were conducted across the Mid-South and in Texas to devise economic thresholds for foliar insecticide applications targeting bollworm in cotton.
View Article and Find Full Text PDF