Publications by authors named "Tyler Toth"

Plants and microbes communicate to collaborate to stop pests, scavenge nutrients, and react to environmental change. Microbiota consisting of thousands of species interact with each other and plants using a large chemical language that is interpreted by complex regulatory networks. In this work, we develop modular interkingdom communication channels, enabling bacteria to convey environmental stimuli to plants.

View Article and Find Full Text PDF

Legumes obtain nitrogen from air through rhizobia residing in root nodules. Some species of rhizobia can colonize cereals but do not fix nitrogen on them. Disabling native regulation can turn on nitrogenase expression, even in the presence of nitrogenous fertilizer and low oxygen, but continuous nitrogenase production confers an energy burden.

View Article and Find Full Text PDF

This work demonstrates for the first time rapid, real-time Mie scatter sensing of colloidal emulsion nucleic acid amplification directly from emulsion droplets. Loop-mediated isothermal amplification is used in this study, and, to our knowledge, has not previously been used in a colloidal emulsion platform. Interfacial tension values (γ) associated with bulk protein adsorption and denaturation at the oil-water interface exhibit characteristic changes in the absence or presence of amplification.

View Article and Find Full Text PDF

This work presents a novel technique using a reverse potential electrospinning mode for fabricating nanoparticle-embedded composites that can be tailored to represent various fiber diameters, surface morphologies, and functional groups necessary for improved cellular adhesion. Polycaprolactone (PCL) nanofibers were electrospun in both traditional positive (PP) and reverse potential (RP) electrical fields. The fibers were incorporated with 300nm polystyrene (PS) fluorescent particles, which contained carboxyl, amine groups, and surfactants.

View Article and Find Full Text PDF