Lipid droplets (LDs) are intracellular storage vesicles composed of a neutral lipid core surrounded by a glycerophospholipid membrane. LD accumulation is associated with different stages of cancer progression and stress responses resulting from chemotherapy. In previous work, a novel dual nano-electrospray ionization source and data-dependent acquisition method for measuring the relative abundances of lipid species between two extracts were described and validated.
View Article and Find Full Text PDFCurrent data-dependent acquisition (DDA) approaches select precursor ions for tandem mass spectrometry (MS/MS) characterization based on their absolute intensity, known as a TopN approach. Low-abundance species may not be identified as biomarkers in a TopN approach. Herein, a new DDA approach is proposed, DiffN, which uses the relative differential intensity of ions between two samples to selectively target species undergoing the largest fold changes for MS/MS.
View Article and Find Full Text PDFCellular viability measurements quantify decreased proliferation or increased cytotoxicity caused by drug candidates or potential environmental toxins. Direct viability measures count each cell to provide an accurate readout. This approach can prove analytically challenging and time-consuming when cells are maintained in 3D structures akin to tissues or solid tumors.
View Article and Find Full Text PDFPaper-based cultures are an emerging platform for preparing three-dimensional (3D) tissue- and tumor-like structures. The ability to stack individual sheets of cell-containing paper affords a modular means of assembling structures with defined cellular compositions and microenvironments. These layered stacks are easily separated at the end of an experiment, providing spatially resolved populations of live cells for further analysis.
View Article and Find Full Text PDFPaper-based scaffolds support the three-dimensional culture of mammalian cells in tissue-like environments. These Tissue Papers, a name that highlights the use of materials obtained from (plant) tissue to generate newly functioning (human) tissue structures, are a promising analytical tool to quantify cellular responses in physiologically relevant extracellular gradients and coculture architectures. Here, we highlight current examples of Tissue Papers, commonly used methods of analysis, and current measurement challenges.
View Article and Find Full Text PDF