The recent development of CRISPR-Cas technology holds promise to correct gene-level defects for genetic diseases. The key element of the CRISPR-Cas system is the Cas protein, a nuclease that can edit the gene of interest assisted by guide RNA. However, these Cas proteins suffer from inherent limitations such as large size, low cleavage efficiency, and off-target effects, hindering their widespread application as a gene editing tool.
View Article and Find Full Text PDFThe recent development of CRISPR-Cas technology holds promise to correct gene-level defects for genetic diseases. The key element of the CRISPR-Cas system is the Cas protein, a nuclease that can edit the gene of interest assisted by guide RNA. However, these Cas proteins suffer from inherent limitations like large size, low cleavage efficiency, and off-target effects, hindering their widespread application as a gene editing tool.
View Article and Find Full Text PDFBeyond their role as a cellular powerhouse, mitochondria are emerging as integral players in molecular signaling and cell fate determination through reactive oxygen species (ROS). While ROS production has historically been portrayed as an unregulated process driving oxidative stress and disease pathology, contemporary studies reveal that ROS also facilitate normal physiology. Mitochondria are especially abundant in cardiac tissue; hence, mitochondrial dysregulation and ROS production are thought to contribute significantly to cardiac pathology.
View Article and Find Full Text PDFNeurodevelopmental disorders offer insight into synaptic mechanisms. To unbiasedly uncover these mechanisms, we studied the 22q11.2 syndrome, a recurrent copy number variant, which is the highest schizophrenia genetic risk factor.
View Article and Find Full Text PDF