Publications by authors named "Tyler Novak"

Hemorrhage is the second leading cause of death in patients under 46 years of age in the United States. Cessation of hemorrhage prevents hemorrhagic shock and tissue hypoxia. Controlling the bleed via direct pressure or tourniquet is often the first line of defense, but long-term care requires staples, hemostatic agents, or sealants that seal the vessel and restore blood flow.

View Article and Find Full Text PDF

Introduction: Gastrointestinal anastomoses are performed millions of times per year worldwide. The major complication they share is anastomotic leak. We describe the development and initial safety/efficacy of a novel luminal stent which aims to address this clinical issue.

View Article and Find Full Text PDF

Cardiac fibrosis is a disease state characterized by excessive collagenous matrix accumulation within the myocardium that can lead to ventricular dilation and systolic failure. Current treatment options are severely lacking due in part to the poor understanding of the complexity of molecular pathways involved in cardiac fibrosis. To close this gap, in vitro model systems that recapitulate the defining features of the fibrotic cellular environment are in need.

View Article and Find Full Text PDF

Hybrid usage of native tissue signals and the engineering control of collagen matrices show the ability to induce local infiltration and differentiation of hMSCs. Additionally, the solid cartilage microparticles inhibit bulk cell-mediated contraction of the composite.

View Article and Find Full Text PDF

Interest in decellularized tissues has steadily gained as potential solutions for degenerative diseases and traumatic events, replacing sites of missing tissue, and providing the relevant biochemistry and microstructure for tissue ingrowth and regeneration. Osteoarthritis, a progressive and debilitating disease, is often initiated with the formation of a focal defect in the otherwise smooth surface of articular cartilage. Decellularized cartilage tissue, which maintains the structural complexity of the native extracellular matrix, has the potential to provide a clinically relevant solution to focal defects or large tissue damage, possibly even circumventing or complementing current techniques such as microfracture and mosaicplasty.

View Article and Find Full Text PDF

Biological tissues and biomaterials are often defined by unique spatial gradients in physical properties that impart specialized function over hierarchical scales. The structure and organization of these materials forms continuous transitional gradients and discrete local microenvironments between adjacent (or within) tissues, and across matrix-cell boundaries, which can be difficult to replicate with common scaffold systems. Here, we studied the matrix densification of collagen leading to gradients in density, mechanical properties, and fibril morphology.

View Article and Find Full Text PDF

Collagen is used extensively for tissue engineering due to its prevalence in connective tissues and its role in defining tissue biophysical and biological signalling properties. However, traditional collagen-based materials fashioned from atelocollagen and telocollagen have lacked collagen densities, multi-scale organization, mechanical integrity, and proteolytic resistance found within tissues in vivo. Here, highly interconnected low-density matrices of D-banded fibrils were created from collagen oligomers, which exhibit fibrillar as well as suprafibrillar assembly.

View Article and Find Full Text PDF

Engineered tissue microenvironments impart specialized cues that drive distinct cellular phenotypes and function. Microenvironments with defined properties, such as mechanical properties and fibril alignment, can elicit specific cellular responses that emulate those observed in vivo. Collagen- and glycosaminoglycan (GAG)-based tissue matrices have been popularized due to their biological ubiquity in a broad range of tissues and the ability to tune structure and mechanical properties through a variety of processes.

View Article and Find Full Text PDF

Drug delivery requires precise intradermal and subcutaneous injections of formulations to clinically relevant penetration depths. However, penetration depth is confounded by skin deflection, which occurs prior to and during penetration as the skin surface deforms axially with the needle, and which varies profoundly due to differing intrinsic mechanical (e.g.

View Article and Find Full Text PDF