Small molecule fluorescent probes that bind selectively to plant cell wall polysaccharides have been instrumental in elucidating the localization and function of these glycans. Arabinogalactan proteins (AGPs) are cell wall proteoglycans implicated in essential functions such as cell signaling, plant growth, and programmed cell death. There is currently no small molecule probe capable of fluorescently labeling AGPs.
View Article and Find Full Text PDFAdvances in next-generation sequencing and other high-throughput technologies have facilitated multiomics research, such as genomics, epigenomics, transcriptomics, proteomics, metabolomics, and phenomics. The resultant emerging multiomics data have brought new challenges as well as opportunities, as seen in the plant and agriculture science domains. We reviewed several bioinformatic and computational methods, models, and platforms, and we have highlighted some of our in-house developed efforts aimed at multiomics data analysis, integration, and management issues faced by the research community.
View Article and Find Full Text PDFThe partitioning of assimilated carbon is a complex process that involves the loading, long-distance transport, and subsequent unloading of carbohydrates from source to sink tissues. The network of plumbing that facilitates this coordinated process is the phloem tissue. Our understanding of the physiology of phloem transport has grown tremendously since the modern theory of mass flow was first put forward, aided by the concomitant progress of technology and experimental methodologies.
View Article and Find Full Text PDFCarbohydrate partitioning from leaves to sink tissues is essential for plant growth and development. The maize (Zea mays) recessive carbohydrate partitioning defective28 (cpd28) and cpd47 mutants exhibit leaf chlorosis and accumulation of starch and soluble sugars. Transport studies with 14C-sucrose (Suc) found drastically decreased export from mature leaves in cpd28 and cpd47 mutants relative to wild-type siblings.
View Article and Find Full Text PDFThis article comments on: . 2020. Sucrose regulates wall ingrowth deposition in phloem parenchyma transfer cells in Arabidopsis via affecting phloem loading activity.
View Article and Find Full Text PDFTo sustain plant growth, development, and crop yield, sucrose must be transported from leaves to distant parts of the plant, such as seeds and roots. To identify genes that regulate sucrose accumulation and transport in maize (Zea mays), we isolated carbohydrate partitioning defective33 (cpd33), a recessive mutant that accumulated excess starch and soluble sugars in mature leaves. The cpd33 mutants also exhibited chlorosis in the leaf blades, greatly diminished plant growth, and reduced fertility.
View Article and Find Full Text PDFThe diversity of plant architecture is determined by axillary meristems (AMs). AMs are produced from small groups of stem cells in the axils of leaf primordia and generate vegetative branches and reproductive inflorescences. Previous studies identified genes critical for AM development that function in auxin biosynthesis, transport, and signaling.
View Article and Find Full Text PDFNa⁺/H⁺ antiporters (NHXs) are integral membrane transporters that catalyze the electroneutral exchange of K⁺ or Na⁺ for H⁺ and are implicated in cell expansion, development, pH and ion homeostasis and salt tolerance. Arabidopsis contains four vacuolar NHX isoforms (NHX1-NHX4), but only the functional roles for NHX1 and NHX2 have been assessed thus far. Colocalization studies indicated that NHX3 and NHX4 colocalize to the tonoplast.
View Article and Find Full Text PDF