Publications by authors named "Tyler M Parsons"

Unlabelled: Clonal hematopoiesis (CH) is the expansion of somatically mutated cells in the hematopoietic compartment of individuals without hematopoietic dysfunction. Large CH clones (i.e.

View Article and Find Full Text PDF

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematopoietic neoplasm resulting from the malignant transformation of T-cell progenitors. While activating NOTCH1 mutations are the dominant genetic drivers of T-ALL, epigenetic dysfunction plays a central role in the pathology of T-ALL and can provide alternative mechanisms to oncogenesis in lieu of or in combination with genetic mutations. The histone demethylase enzyme KDM6A (UTX) is also recurrently mutated in T-ALL patients and functions as a tumor suppressor.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) with age-associated somatic mutations that disproportionally contribute to hematopoiesis generate the condition known as clonal hematopoiesis (CH). While CH conveys increased risk of hematologic cancer, there is also strong association between CH and cardiovascular disease (CVD). Accumulating evidence suggests that inflammation mechanistically links CH to CVD, and we hypothesized that CH may be a predictive biomarker of CVD in conditions of chronic inflammation.

View Article and Find Full Text PDF

Background: Bone-marrow-derived haematopoietic stem and progenitor cells (HSPCs) are a prominent part of the highly complex tumour microenvironment (TME) where they localise within tumours and maintain haematopoietic potency. Understanding the role HSPCs play in tumour growth and response to radiation therapy (RT) may lead to improved patient treatments and outcomes.

Methods: We used a mouse model of non-small cell lung carcinoma where tumours were exposed to RT regimens alone or in combination with GW2580, a pharmacological inhibitor of colony stimulating factor (CSF)-1 receptor.

View Article and Find Full Text PDF