Diabetic retinopathy, retinopathy of prematurity and retinal vein occlusion are potentially blinding conditions largely due to their respective neovascular components. The development of real-time in vivo molecular imaging methods, to assess levels of retinal neovascularization (NV), would greatly benefit patients afflicted with these conditions. mRNA hybridization techniques offer a potential method to image retinal NV.
View Article and Find Full Text PDFBone marrow-derived progenitor cells and macrophages are known to migrate into the retina in response to inflammation and neovascularization. These migratory cells might play important regulatory roles in the pathogenesis of neovascularization, a common complication observed in diabetic retinopathy, retinopathy of prematurity, and retinal vein occlusion. Hypoxia-inducible factor 1α (HIF-1α) has been shown to contribute to the pathogenesis of retinal inflammation and neovascularization.
View Article and Find Full Text PDFMouse laser-induced choroidal neovascularization (mouse LCNV) recapitulates the "wet" form of human age-related macular degeneration (AMD). Vascular cell adhesion molecule-1 (VCAM-1) is a known inflammatory biomarker, and it increases in the choroidal neovascular tissues characteristic of this experimental model. We have designed and constructed gold nanoparticles (AuNPs) functionalized with hairpin-DNA that incorporates an antisense sequence complementary to VCAM-1 mRNA (AS-VCAM-1 hAuNPs) and tested them as optical imaging probes.
View Article and Find Full Text PDF