Long-term programmed rheostatic changes in physiology are essential for animal fitness. Hypothalamic nuclei and the pituitary gland govern key developmental and seasonal transitions in reproduction. The aim of this study was to identify the molecular substrates that are common and unique to developmental and seasonal timing.
View Article and Find Full Text PDFJ Exp Zool A Ecol Integr Physiol
December 2022
Seasonal cycles of environmental cues generate variation in the timing of life-history transition events across taxa. It is through the entrainment of internal, endogenous rhythms of organisms to these external, exogenous rhythms in environment, such as cycling temperature and daylight, by which organisms can regulate and time life history transitions. Here, we review the current understanding of how photoperiod both stimulates and terminates seasonal reproduction in birds.
View Article and Find Full Text PDFThe present study investigated neuroanatomically localised changes in de novo DNA methyltransferase expression in the female Siberian hamster (Phodopus sungorus). The objectives were to identify the neuroendocrine substrates that exhibit rhythmic Dnmt3a and Dnmt3b expression across the oestrous cycle and also examine the role of ovarian steroids. Hypothalamic Dnmt3a expression was observed to significantly increase during the transition from pro-oestrous to oestrous.
View Article and Find Full Text PDF