The purpose of this study was to evaluate the biodistribution of a platelet-derived exosome product (PEP), previously shown to promote regeneration in the setting of wound healing, in a porcine model delivered through various approaches. Exosomes were labeled with DiR far-red lipophilic dye to track and quantify exosomes in tissue, following delivery via intravenous, pulmonary artery balloon catheter, or nebulization in sus scrofa domestic pigs. Following euthanasia, far-red dye was detected by Xenogen IVUS imaging, while exosomal protein CD63 was detected by Western blot and immunohistochemistry.
View Article and Find Full Text PDFUrinary incontinence afflicts up to 40% of adult women in the United States. Stress urinary incontinence (SUI) accounts for approximately one-third of these cases, precipitating ~200,000 surgical procedures annually. Continence is maintained through the interplay of sub-urethral support and urethral sphincter coaptation, particularly during activities that increase intra-abdominal pressure.
View Article and Find Full Text PDFFemale Pelvic Med Reconstr Surg
October 2021
Objectives: The purpose of this study was to explore the utility of an injectable purified exosome product derived from human apheresis blood to (1) augment surgical closure of vaginal mesh exposures, and (2) serve as a stand-alone therapy for vaginal mesh exposure.
Methods: Sixteen polypropylene meshes (1×1-3×3 cm) were implanted in the vaginas of 7 Yorkshire-crossed pigs by urogynecologic surgeons (day 0). On day 7, group 1 underwent surgical intervention via vaginal tissue suture reclosure with (n=2 pigs, n=4 meshes) or without (n=2 pigs, n=4 meshes) exosome injection; group 2 underwent medical intervention with an exosome injection (n=3, n=8 meshes).
To optimize the regenerative proficiency of stem cells, a cardiopoietic protein-based cocktail consisting of multiple growth factors has been developed and advanced into clinical trials for treatment of ischemic heart failure. Streamlining the inductors of cardiopoiesis would address the resource intensive nature of the current stem cell enhancement protocol. To this end, the microencapsulated-modified-mRNA (M RNA) technique was here applied to introduce early cardiogenic genes into human adipose-derived mesenchymal stem cells (AMSCs).
View Article and Find Full Text PDF