Publications by authors named "Tyler J Morin"

Different synthetic methods have been developed to prepare eight new redox-active pincer-type ligands, H(X,Y), that have pyrazol-1-yl flanking donors attached to an ortho-position of each ring of a diarylamine anchor and that have different groups, X and Y, at the para-aryl positions. Together with four previously known H(X,Y) ligands, a series of 12 Ni(X,Y)2 complexes were prepared in high yields by a simple one-pot reaction. Six of the 12 derivatives were characterized by single-crystal X-ray diffraction, which showed tetragonally distorted hexacoordinate nickel(II) centers.

View Article and Find Full Text PDF

A series of iron(II) chloride complexes of pentadentate ligands related to α,α,α',α'-tetra(pyrazolyl)-2,6-lutidine, pz(4)lut, has been prepared to evaluate whether pyrazolyl substitution has any systematic impact on the electronic properties of the complexes. For this purpose, the new tetrakis(3,4,5-trimethylpyrazolyl)lutidine ligand, pz**(4)lut, was prepared via a CoCl(2)-catalyzed rearrangement reaction. The equimolar combination of ligand and FeCl(2) in methanol gives the appropriate 1:1 complexes [FeCl(pz(R)(4)lut)]Cl that are each isolated in the solid state as a hygroscopic solvate.

View Article and Find Full Text PDF

A improved preparation of the pentadentate ligand alpha,alpha,alpha',alpha'-tetra(pyrazolyl)lutidine, pz(4)lut, and the syntheses of three new alkyl-substituted pyrazolyl derivatives pz(4')(4)lut (pz(4') = 4-methylpyrazolyl), pz*(4)lut (pz* = 3,5-dimethylpyrazolyl), and pz(DIP)(4)lut (pz(DIP) = 3,5-diisopropylpyrazolyl) are described. The silver(I) complexes of these ligands were studied to ascertain the impact of pyrazolyl substitution, if any, on their binding modes and on solubility issues. In the solid state, [Ag(pz(4)lut)](BF(4)) (1), [Ag(pz(4')(4)lut)](BF(4)) (2), and [Ag(pz*(4)lut)](BF(4)) (3) give cyclic dications as a result of two ligands sandwiching two silver centers where each ligand binds the metals through only pyrazolyl nitrogen donors.

View Article and Find Full Text PDF

A new pentadentate ligand, alpha,alpha,alpha',alpha'-tetra(pyrazolyl)lutidine, pz 4lut, has been prepared by a CoCl 2-catalyzed rearrangement reaction between 2,6-pyridinedicarboxaldehyde and dipyrazolylthione. The coordination chemistry with some divalent first-row transition metal (Mn, Fe, Co, Ni, Cu, and Zn) chlorides has been explored. The electronic properties indicate that the new kappa (5)N ligand is a slightly stronger-field donor to Ni (2+) and Co (2+) than a related pentadentate ligand with five pyridyl donors presumably because of greater interaction between the metal and axial pyridyl.

View Article and Find Full Text PDF

The reaction between 2-pyrazolyl-4-X-anilines, H(pzAnX), (X = para-OMe (L1), Me (L2), H (L3), Cl (L4), CO2Et (L5), CF3 (L6), CN (L7)) and triphenylboron in boiling toluene affords the respective, highly emissive N,N'-boron chelate complexes, BPh2(pzAnX) (X = para-OMe (1), Me (2), H (3), Cl (4), CO2Et (5), CF3 (6), CN (7)) in high yield. The structural, electrochemical, and photophysical properties of the new boron complexes can be fine-tuned by varying the electron-withdrawing or -donating power of the para-aniline substituent (delineated by the substituent's Hammett parameter). Those complexes with electron-withdrawing para-aniline substituents such as CO2Et (5), CF3 (6), and CN (7) have more planar chelate rings, more 'quinoidal' distortion in the aniline rings, greater chemical stability, higher oxidation potentials, and more intense (phiF = 0.

View Article and Find Full Text PDF