Introduction: Altered lipid metabolism is implicated in Alzheimer's disease (AD), but the mechanisms remain obscure. Aging-related declines in circulating plasmalogens containing omega-3 fatty acids may increase AD risk by reducing plasmalogen availability.
Methods: We measured four ethanolamine plasmalogens (PlsEtns) and four closely related phosphatidylethanolamines (PtdEtns) from the Alzheimer's Disease Neuroimaging Initiative (ADNI; n = 1547 serum) and University of Pennsylvania (UPenn; n = 112 plasma) cohorts, and derived indices reflecting PlsEtn and PtdEtn metabolism: PL-PX (PlsEtns), PL/PE (PlsEtn/PtdEtn ratios), and PBV (plasmalogen biosynthesis value; a composite index).
Alzheimer's disease (AD) is the most common neurodegenerative disease presenting major health and economic challenges that continue to grow. Mechanisms of disease are poorly understood but significant data point to metabolic defects that might contribute to disease pathogenesis. The Alzheimer Disease Metabolomics Consortium (ADMC) in partnership with Alzheimer Disease Neuroimaging Initiative (ADNI) is creating a comprehensive biochemical database for AD.
View Article and Find Full Text PDF