This study presents the design, fabrication, and evaluation of a general platform for the creation of three-dimensional printed devices (3DPDs) for tissue engineering applications. As a demonstration, we modeled the liver with 3DPDs consisting of a pair of parallel millifluidic channels that function as portal-venous (PV) and hepatobiliary (HB) structures. Perfusion of medium or whole blood through the PV channel supports the hepatocyte-containing HB channel.
View Article and Find Full Text PDFTissue Eng Part C Methods
January 2023
This study presents a novel surgical model developed to provide hematological support for implanted cellularized devices augmenting or replacing liver tissue function. Advances in bioengineering provide tools and materials to create living tissue replacements designed to restore that lost to disease, trauma, or congenital deformity. Such substitutes are often assembled and matured and need an immediate blood supply upon implantation, necessitating the development of supporting protocols.
View Article and Find Full Text PDFRecent research has highlighted the importance of key tumor microenvironment features, notably the collagen-rich extracellular matrix (ECM) in characterizing tumor invasion and progression. This led to great interest from both basic researchers and clinicians, including pathologists, to include collagen fiber evaluation as part of the investigation of cancer development and progression. Fibrillar collagen is the most abundant in the normal extracellular matrix, and was revealed to be upregulated in many cancers.
View Article and Find Full Text PDFFocal adhesion kinase (FAK) is an important mediator of extracellular matrix-integrin mechano-signal transduction that regulates cell motility, survival, and proliferation. As such, FAK is being investigated as a potential therapeutic target for malignant and fibrotic diseases, and numerous clinical trials of FAK inhibitors are underway. The function of FAK in nonmalignant, nonmotile epithelial cells is not well understood.
View Article and Find Full Text PDFA graphene field-effect transistor (gFET) was non-covalently functionalised with 1-pyrenebutyric acid N-hydroxysuccinimide ester and conjugated with anti-CD63 antibodies for the label-free detection of exosomes. Using a microfluidic channel, part of a graphene film was exposed to solution. The change in electrical properties of the exposed graphene created an additional minimum alongside the original Dirac point in the drain-source current (I) - back-gate voltage (V) curve.
View Article and Find Full Text PDFThe tumor microenvironment is fundamental to cancer progression, and the influence of its mechanical properties is increasingly being appreciated. Tamoxifen has been used for many years to treat estrogen-positive breast cancer. Here we report that tamoxifen regulates the level and activity of collagen cross-linking and degradative enzymes, and hence the organization of the extracellular matrix, via a mechanism involving both the G protein-coupled estrogen receptor (GPER) and hypoxia-inducible factor-1 alpha (HIF-1A).
View Article and Find Full Text PDFThe hallmark of pancreatic ductal adenocarcinoma (PDAC) is abundant desmoplasia, which is orchestrated by pancreatic stellate cells (PSCs) and accounts for the majority of the stroma surrounding the tumour. Healthy PSCs are quiescent, but upon activation during disease progression, they adopt a myofibroblast-contractile phenotype and secrete and concomitantly reorganise the stiff extracellular matrix (ECM). Transforming growth factor β (TGF-β) is a potent activator of PSCs, and its activation requires spatiotemporal organisation of cellular and extracellular cues to liberate it from an inactive complex with latent TGF-β binding protein (LTBP).
View Article and Find Full Text PDFTalin is a ubiquitous, large focal adhesion protein that links intracellular networks with the extracellular matrix (ECM) via its connection with the actin cytoskeleton and membrane integrins. It is one of a handful molecules that can expose new recognition sites when undergoing force-induced mechanical unfolding, and it can bind and recruit cytoskeletal proteins that are involved in mechanotransduction. Talin has attracted great interest in the field of mechanobiology because of its plasticity in undergoing conformational changes under force stimulation as well as its cellular localization that bridges the cytoskeleton with the ECM.
View Article and Find Full Text PDFPolymorphonuclear leukocytes (PMNs) release granule proteins as the first line of defense against bacteria and set up chemotactic gradients that result in monocyte infiltration to the site of injury. Although well established, the role of biomaterials in regulating adherent PMN degranulation and subsequent PMN-monocyte paracrine interactions is less clear. The aim of this study was to determine how biomaterials affect the degranulation of selected biomarkers and downstream monocyte adhesion and transendothelial migration.
View Article and Find Full Text PDFIn the foreign body response, infiltrating PMNs exocytose granule subsets to influence subsequent downstream inflammatory and wound healing events. In previous studies, we found that PMNs cultured on poly(ethylene glycol) (PEG)-containing hydrogels (i.e.
View Article and Find Full Text PDFPolymorphonuclear leukocytes (PMNs) are recruited to sites of injury and biomaterial implants. Once activated, PMNs can exocytose their granule subsets to recruit monocytes (MCs) and mediate MC/macrophage activation. We investigated the release of myeloperoxidase (MPO), a primary granule marker, and matrix metalloproteinase-9 (MMP-9), a tertiary granule marker, from human blood-derived PMNs cultured on poly(ethylene glycol) (PEG) hydrogels, polydimethylsiloxane (PDMS), tissue culture polystyrene (TCPS) and gelatin-PEG (GP) hydrogels, with and without the presence of the bacterial peptide formyl-Met-Leu-Phe.
View Article and Find Full Text PDF