Publications by authors named "Tyler Gerhardson"

Objective: The goal of the work described here was to develop the first neuronavigation-guided transcranial histotripsy (NaviTH) system and associated workflow for transcranial ablation.

Methods: The NaviTH system consists of a 360-element, 700 kHz transmitter-receiver-capable transcranial histotripsy array, a clinical neuronavigation system and associated equipment for patient-to-array co-registration and therapy planning and targeting software systems. A workflow for NaviTH treatments, including pre-treatment aberration correction, was developed.

View Article and Find Full Text PDF

Histotripsy has been previously shown to treat a wide range of locations through excised human skulls in vitro. In this article, a transcranial magnetic resonance (MR)-guided histotripsy (tcMRgHt) system was developed, characterized, and tested in the in vivo pig brain through an excised human skull. A 700-kHz, 128-element MR-compatible phased-array ultrasound transducer with a focal depth of 15 cm was designed and fabricated in-house.

View Article and Find Full Text PDF

An inexpensive, accurate focused ultrasound stereotactic targeting method guided by pretreatment magnetic resonance imaging (MRI) images for murine brain models is presented. An uncertainty of each sub-component of the stereotactic system was analyzed. The entire system was calibrated using clot phantoms.

View Article and Find Full Text PDF

Cavitation events generated during histotripsy therapy generate large acoustic cavitation emission (ACE) signals that can be detected through the skull. This article investigates the feasibility of using these ACE signals, acquired using the elements of a 500-kHz, 256-element hemispherical histotripsy transducer as receivers, to localize and map the cavitation activity in real time through the human skullcap during transcranial histotripsy therapy. The locations of the generated cavitation events predicted using the ACE feedback signals in this study were found to be accurate to within <1.

View Article and Find Full Text PDF

Background: Intracerebral hemorrhage (ICH) is characterized by a 30-d mortality rate of 40% and significant disability for those who survive.

Objective: To investigate the initial safety concerns of histotripsy mediated clot liquefaction and aspiration in a porcine ICH model. Histotripsy is a noninvasive, focused ultrasound technique that generates cavitation to mechanically fractionate tissue.

View Article and Find Full Text PDF

Histotripsy fractionates tissue through a mechanical, non-invasive ultrasonic ablation process that precisely controls acoustic cavitation while utilizing real-time ultrasound (US) imaging guidance. This study investigates the potential, feasibility and tumor volume reduction effects of histotripsy for liver cancer ablation in a subcutaneous in vivo murine Hepatocellular Carcinoma (HCC) model. Hep3B tumors were generated in the right flanks of 14 NSG and 7 NOD-SCID mice.

View Article and Find Full Text PDF

Retransfusion of a patient's own shed blood during cardiac surgery is attractive since it reduces the need for allogeneic transfusion, minimizes cost, and decreases transfusion related morbidity. Evidence suggests that lipid micro-emboli associated with the retransfusion of the shed blood are the predominant causes of the neurocognitive disorders. We have developed a novel acoustophoretic filtration system that can remove lipids from blood at clinically relevant flow rates.

View Article and Find Full Text PDF

Histotripsy is a minimally invasive ultrasound therapy that has shown rapid liquefaction of blood clots through human skullcaps in an in vitro intracerebral hemorrhage model. However, the efficiency of these treatments can be compromised if the skull-induced aberrations are uncorrected. We have developed a catheter hydrophone which can perform aberration correction (AC) and drain the liquefied clot following histotripsy treatment.

View Article and Find Full Text PDF

This in vitro study investigated the effects of ultrasound frequency and focal spacing on blood clot liquefaction via transcranial histotripsy. Histotripsy pulses were delivered using two 256-element hemispherical transducers of different frequency (250 and 500 kHz) with 30-cm aperture diameters. A 4-cm diameter spherical volume of in vitro blood clot was treated through 3 excised human skullcaps by electronically steering the focus with frequency proportional focal spacing: λ/2, 2 λ/3 and λ with 50 pulses per location.

View Article and Find Full Text PDF

Histotripsy is an ultrasound ablation method that depends on the initiation of a cavitation bubble cloud to fractionate soft tissue. Although previous work has provided significant insight into the process of intrinsic threshold histotripsy, the majority of these studies have used highly focused (i.e.

View Article and Find Full Text PDF