Publications by authors named "Tyler G Fenske"

Article Synopsis
  • * Researchers are developing selective chemical probes for PBRM1's bromodomains to better understand its role in cancer and immunotherapy, as existing inhibitors also target other bromodomains (SMARCA2 and SMARCA4).
  • * A study screened nearly 2,000 fragments identifying 17 potential inhibitors, leading to the creation of highly selective nanomolar inhibitors that block PBRM1’s ability to bind to acetylated histone peptides and stop the growth of PBR
View Article and Find Full Text PDF

The human chemokines CCL19 and CCL21 bind to the G protein-coupled receptor (GPCR) CCR7 and play an important role in the trafficking of immune cells as well as cancer metastasis. Conserved binding sites for sulfotyrosine residues on the receptor contribute significantly to the chemokine/GPCR interaction and have been shown to provide promising targets for new drug-discovery efforts to disrupt the chemokine/GPCR interaction and, consequently, tumor metastasis. Here, we report the first X-ray crystal structure of a truncated CCL19 (residues 7-70) at 2.

View Article and Find Full Text PDF

CXCL12, a CXC-type chemokine, binds its receptor CXCR4, and the resulting signaling cascade is essential during development and subsequently in immune function. Pathologically, the CXCL12-CXCR4 signaling axis is involved in many cancers and inflammatory diseases and thus has sparked continued interest in the development of therapeutics. Small molecules targeting CXCR4 have had mixed results in clinical trials.

View Article and Find Full Text PDF

The PLP-dependent l-arginine hydroxylase/deaminase MppP from Streptomyces wadayamensis (SwMppP) is involved in the biosynthesis of l-enduracididine, a nonproteinogenic amino acid found in several nonribosomally produced peptide antibiotics. SwMppP uses only PLP and molecular oxygen to catalyze a 4-electron oxidation of l-arginine to form a mixture of 2-oxo-4(S)-hydroxy-5-guanidinovaleric acid and 2-oxo-5-guanidinovaleric acid. Steady-state kinetics analysis in the presence and absence of catalase shows that one molecule of peroxide is formed for every molecule of dioxygen consumed in the reaction.

View Article and Find Full Text PDF