Background: Intervertebral disc (IVD) disorders (e.g., herniation) directly contribute to back pain, which is a leading cause of global disability.
View Article and Find Full Text PDFObjective: Intervertebral disk degeneration is a prevalent postoperative complication after discectomy, underscoring the need to develop preventative and bioactive treatment strategies that decelerate degeneration and seal annulus fibrosus (AF) defects. Human mesenchymal stem cell-derived exosomes (MSC-Exos) hold promise for cell-free bioactive repair; however, their ability to promote AF repair is poorly understood. The objective of this study was to evaluate the ability of MSC-Exos to promote endogenous AF repair processes and integrate MSC-Exos within a biomaterial delivery system.
View Article and Find Full Text PDFEmergent approaches in regenerative medicine look toward the use of extracellular vesicles (EVs) as a next-generation treatment strategy for intervertebral disc (IVD) degeneration (IVDD) because of their ability to attenuate chronic inflammation, reduce apoptosis, and stimulate proliferation in a number of tissue systems. Yet, there are no Food and Drug Administration (FDA)-approved EV therapeutics in the market with an indication for IVDD, which motivates this article to review the current state of the field and provide an IVD-specific framework to assess its efficacy. In this systematic review, 29 preclinical studies that investigate EVs in relation to the IVD are identified, and additionally, the regulatory approval process is reviewed in an effort to accelerate emerging EV-based therapeutics toward FDA submission and timeline-to-market.
View Article and Find Full Text PDFHydrogels are extraordinarily versatile by design and can enhance repair in diseased and injured musculoskeletal tissues. Biological fixation of these constructs is a significant determinant factor that is critical to the clinical success and functionality of regenerative technologies for musculoskeletal repair. In the context of an intervertebral disc (IVD) herniation, nucleus pulposus tissue protrudes through the ruptured annulus fibrosus (AF), consequentially impinging on spinal nerve roots and causing debilitating pain.
View Article and Find Full Text PDFIntervertebral disc (IVD) herniation causes pain and disability, but current discectomy procedures alleviate pain without repairing annulus fibrosus (AF) defects. Tissue engineering strategies seal AF defects by utilizing hydrogel systems to prevent recurrent herniation, however current biomaterials are limited by poor adhesion to wetted tissue surfaces or low failure strength resulting in considerable risk of implant herniation upon spinal loading. Here, we developed a two-part repair strategy comprising a dual-modified (oxidized and methacrylated) glycosaminoglycan that can chemically adsorb an injectable interpenetrating network hydrogel composed of fibronectin-conjugated fibrin and poly (ethylene glycol) diacrylate (PEGDA) to covalently bond the hydrogel to AF tissue.
View Article and Find Full Text PDFIn injured intervertebral discs, disruptions in fibre organization and in cellular contractility result in a fibrotic phenotype and progressive tissue degeneration.
View Article and Find Full Text PDFPluripotent stem cells can be differentiated into 3D retinal organoids, with major cell types self-patterning into a polarized, laminated architecture. In static cultures, organoid development may be hindered by limitations in diffusion of oxygen and nutrients. Herein, we report a bioprocess using rotating-wall vessel (RWV) bioreactors to culture retinal organoids derived from mouse pluripotent stem cells.
View Article and Find Full Text PDFDefects in the annulus fibrosus (AF) of intervertebral discs allow nucleus pulposus tissue to herniate causing painful disability. Microdiscectomy procedures remove herniated tissue fragments, but unrepaired defects remain allowing reherniation or progressive degeneration. Cell therapies show promise to enhance repair, but methods are undeveloped and carriers are required to prevent cell leakage.
View Article and Find Full Text PDFJ Biomed Mater Res A
May 2017
Although transplantation of retinal pigment epithelial (RPE) cells has shown promise for the treatment of retinal degenerative diseases, this therapeutic approach is not without challenges. Two major challenges are RPE cell dedifferentiation and inflammatory response following transplantation. The aim of this work is to understand how the rigidity of a scaffold, a relatively unexplored design aspect in retinal tissue engineering, affects RPE cells, particularly the pathways associated with the aforementioned challenges.
View Article and Find Full Text PDF