We investigated whether CO-induced ocean acidification (OA) affects dopamine receptor-dependent behavior in bicolor damselfish (Stegastes partitus). Damselfish were kept in aquaria receiving flow through control (pH ~ 8.03; pCO ~ 384 μatm) or OA (pH ~ 7.
View Article and Find Full Text PDFThe California Current System experiences seasonal ocean acidification and hypoxia (OAH) owing to wind-driven upwelling, but little is known about the intensity, frequency, and depth distribution of OAH in the shallow nearshore environment. Here we present observations of OAH and dissolved inorganic carbon and nutrient parameters based on monthly transects from March 2017 to September 2018 extending from the surf zone to the ~ 40 m depth contour in La Jolla, California. Biologically concerning OAH conditions were observed at depths as shallow as 10 m and as close as 700 m to the shoreline.
View Article and Find Full Text PDFBenthic incubation chambers facilitate metabolism studies in shallow water environments. They are used to isolate the water surrounding a study organism or community so that changes in water chemistry can be quantified to characterise physiological processes such as photosynthesis, respiration, and calcification. Such field measurements capture the biological processes taking place within the benthic community while incorporating the influence of environmental variables that are often difficult to recreate in settings.
View Article and Find Full Text PDFSalinity normalization of total alkalinity (TA) and dissolved inorganic carbon (DIC) data is commonly used to account for conservative mixing processes when inferring net metabolic modification of seawater by coral reefs. Salinity (S), TA, and DIC can be accurately and precisely measured, but salinity normalization of TA (nTA) and DIC (nDIC) can generate considerable and unrecognized uncertainties in coral reef metabolic rate estimates. While salinity normalization errors apply to nTA, nDIC, and other ions of interest in coral reefs, here, we focus on nTA due to its application as a proxy for net coral reef calcification and the importance for reefs to maintain calcium carbonate production under environmental change.
View Article and Find Full Text PDFClimate change refugia in the terrestrial biosphere are areas where species are protected from global environmental change and arise from natural heterogeneity in landscapes and climate. Within the marine realm, ocean acidification, or the global decline in seawater pH, remains a pervasive threat to organisms and ecosystems. Natural variability in seawater carbon dioxide (CO ) chemistry, however, presents an opportunity to identify ocean acidification refugia (OAR) for marine species.
View Article and Find Full Text PDFOcean acidification refers to the lowering of the ocean's pH due to the uptake of anthropogenic CO from the atmosphere. Coral reef calcification is expected to decrease as the oceans become more acidic. Dissolving calcium carbonate (CaCO) sands could greatly exacerbate reef loss associated with reduced calcification but is presently poorly constrained.
View Article and Find Full Text PDFWorldwide, coral reef ecosystems are experiencing increasing pressure from a variety of anthropogenic perturbations including ocean warming and acidification, increased sedimentation, eutrophication, and overfishing, which could shift reefs to a condition of net calcium carbonate (CaCO3) dissolution and erosion. Herein, we determine the net calcification potential and the relative balance of net organic carbon metabolism (net community production; NCP) and net inorganic carbon metabolism (net community calcification; NCC) within 23 coral reef locations across the globe. In light of these results, we consider the suitability of using these two metrics developed from total alkalinity (TA) and dissolved inorganic carbon (DIC) measurements collected on different spatiotemporal scales to monitor coral reef biogeochemistry under anthropogenic change.
View Article and Find Full Text PDFVarious life cycle stages of cyst-producing dinoflagellates often appear differently colored under the microscope; gametes appear paler while zygotes are darker in comparison to vegetative cells. To compare physiological and photochemical competency, the pigment composition of discrete life cycle stages was determined for the common resting cyst-producing dinoflagellate Scrippsiella lachrymosa. Vegetative cells had the highest cellular pigment content (25.
View Article and Find Full Text PDFAnnual Emiliania huxleyi blooms (along with other coccolithophorid species) play important roles in the global carbon and sulfur cycles. E. huxleyi blooms are routinely terminated by large, host-specific dsDNA viruses, (Emiliania huxleyi Viruses; EhVs), making these host-virus interactions a driving force behind their potential impact on global biogeochemical cycles.
View Article and Find Full Text PDFAtmospheric radon ((222)Rn) and carbon dioxide (CO2) concentrations were used to gain insight into fugitive emissions in an Australian coal seam gas (CSG) field (Surat Basin, Tara region, Queensland). (222)Rn and CO2 concentrations were observed for 24 h within and outside the gas field. Both (222)Rn and CO2 concentrations followed a diurnal cycle with night time concentrations higher than day time concentrations.
View Article and Find Full Text PDF