Publications by authors named "Tyler Cutforth"

Enteric symptoms are hallmarks of prodromal Parkinson's disease (PD) that appear decades before the onset of motor symptoms and diagnosis. PD patients possess circulating T cells that recognize specific α-synuclein (α-syn)-derived epitopes. One epitope, α-syn, binds with strong affinity to the HLA-DRB115:01 allele implicated in autoimmune diseases.

View Article and Find Full Text PDF

Group A (GAS) infections can cause neuropsychiatric sequelae in children due to post-infectious encephalitis. Multiple GAS infections induce migration of Th17 lymphocytes from the nose into the brain, which are critical for microglial activation, blood-brain barrier (BBB) and neural circuit impairment in a mouse disease model. How endothelial cells (ECs) and microglia respond to GAS infections, and which Th17-derived cytokines are essential for these responses are unknown.

View Article and Find Full Text PDF

Neurovascular unit and barrier maturation rely on vascular basement membrane (vBM) composition. Laminins, a major vBM component, are crucial for these processes, yet the signaling pathway(s) that regulate their expression remain unknown. Here, we show that mural cells have active Wnt/β-catenin signaling during central nervous system development in mice.

View Article and Find Full Text PDF

Antibodies against neuronal receptors and synaptic proteins are associated with a group of ill-defined central nervous system (CNS) autoimmune diseases termed autoimmune encephalitides (AE), which are characterized by abrupt onset of seizures and/or movement and psychiatric symptoms. Basal ganglia encephalitis (BGE), representing a subset of AE syndromes, is triggered in children by repeated group A (GAS) infections that lead to neuropsychiatric symptoms. We have previously shown that multiple GAS infections of mice induce migration of Th17 lymphocytes from the nose into the brain, causing blood-brain barrier (BBB) breakdown, extravasation of autoantibodies into the CNS, and loss of excitatory synapses within the olfactory bulb (OB).

View Article and Find Full Text PDF

Coordinating angiogenesis with acquisition of tissue-specific properties in endothelial cells is essential for vascular function. In the retina, endothelial cells form a blood-retina barrier by virtue of tight junctions and low transcytosis. While the canonical Norrin/Fz4/Lrp5/6 pathway is essential for angiogenesis, vascular remodeling, and barrier maturation, how these diverse processes are coordinated remains poorly understood.

View Article and Find Full Text PDF

Antibodies against neuronal receptors and synaptic proteins are associated with autoimmune encephalitides (AE) that produce movement and psychiatric disorders. In order to exert their pathological effects on neural circuits, autoantibodies against central nervous system (CNS) targets must gain access to the brain and spinal cord by crossing the blood-brain barrier (BBB), a tightly regulated gateway formed by endothelial cells lining CNS blood vessels. To date, the pathogenic mechanisms that underlie autoantibody-triggered encephalitic syndromes are poorly understood, and how autoantibodies breach the barrier remains obscure for almost all AE syndromes.

View Article and Find Full Text PDF

Copy number variants and point mutations of (also called ) gene encoding an immunoglobulin (Ig) superfamily adhesion molecule have been linked to autism spectrum disorders, intellectual disability and neurocognitive delay associated with Jacobsen syndrome, but the physiological roles of Neph2 in the mammalian brain remain largely unknown. Neph2 is highly expressed in the dentate granule (DG) neurons of the hippocampus and is localized in both dendrites and axons. It was recently shown that Neph2 is required for the formation of mossy fiber filopodia, the axon terminal structure of DG neurons forming synapses with GABAergic neurons of CA3.

View Article and Find Full Text PDF

infections have been associated with two autoimmune diseases of the CNS: Sydenham's chorea (SC) and Pediatric Autoimmune Neuropsychiatric Disorders Associated with infections (PANDAS). Despite the high frequency of pharyngeal streptococcus infections among children, only a small fraction develops SC or PANDAS. This suggests that several factors in combination are necessary to trigger autoimmune complications: specific strains that induce a strong immune response toward the host nervous system; genetic susceptibility that predispose children toward an autoimmune response involving movement or tic symptoms; and multiple infections of the throat or tonsils that lead to a robust T17 cellular and humoral immune response when untreated.

View Article and Find Full Text PDF

Synaptic target specificity, whereby neurons make distinct types of synapses with different target cells, is critical for brain function, yet the mechanisms driving it are poorly understood. In this study, we demonstrate Kirrel3 regulates target-specific synapse formation at hippocampal mossy fiber (MF) synapses, which connect dentate granule (DG) neurons to both CA3 and GABAergic neurons. Here, we show Kirrel3 is required for formation of MF filopodia; the structures that give rise to DG-GABA synapses and that regulate feed-forward inhibition of CA3 neurons.

View Article and Find Full Text PDF

Synaptic adhesion molecules regulate diverse aspects of neuronal synapse development, including synapse specificity, formation, and maturation. Neph2, also known as Kirrel3, is an immunoglobulin superfamily adhesion molecule implicated in intellectual disability, neurocognitive delay associated with Jacobsen syndrome, and autism spectrum disorders. We here report mice lacking Neph2 (Neph2(-/-) mice) display moderate hyperactivity in a familiar, but not novel, environment and defective novel object recognition with normal performances in Morris water maze spatial learning and memory, contextual fear conditioning and extinction, and pattern separation tests.

View Article and Find Full Text PDF

The brain regulates blood flow to match energy demand to nutrient supply. In this issue of Neuron, using in vivo optical imaging and optogenetics, Hill et al. (2015) report that arteriolar smooth muscle cells are key players in regulating cerebral blood flow in the healthy state and contribute to the "no reflow" phenomenon after ischemic stroke.

View Article and Find Full Text PDF

Angiogenesis, or the growth of new blood vessels from existing vasculature, is critical for the proper development of many organs. This process is inhibited and tightly regulated in adults, once endothelial cells have acquired organ-specific properties. Within the central nervous system (CNS), angiogenesis and acquisition of blood-brain barrier (BBB) properties by endothelial cells is essential for CNS function.

View Article and Find Full Text PDF

The accessory olfactory system controls social and sexual interactions in mice that are crucial for survival. Vomeronasal sensory neurons (VSNs) form synapses with dendrites of second order neurons in glomeruli of the accessory olfactory bulb (AOB). Axons of VSNs expressing the same vomeronasal receptor coalesce into multiple glomeruli within spatially conserved regions of the AOB.

View Article and Find Full Text PDF

Background: Soon after birth, all mammals must initiate milk suckling to survive. In rodents, this innate behavior is critically dependent on uncharacterized maternally derived chemosensory ligands. Recently, the first pheromone sufficient to initiate suckling was isolated from the rabbit.

View Article and Find Full Text PDF

In many species, the detection and recognition of odors is critical to regulate behaviors that are essential for survival, such as foraging for food and avoidance of predators. The formation of complex stereotypic connections between olfactory sensory neurons (OSNs) and second-order neurons in the olfactory bulb (OB) is believed to be important for accurate odorant information processing. In mice, ablation of OSNs that innervate the dorsal region of the OB leads to a loss of avoidance behavior in response to aversive and predator odorants (Kobayakawa et al.

View Article and Find Full Text PDF

Sensory information is transmitted to the brain where it must be processed to translate stimulus features into appropriate behavioural output. In the olfactory system, distributed neural activity in the nose is converted into a segregated map in the olfactory bulb. Here we investigate how this ordered representation is transformed in higher olfactory centres in mice.

View Article and Find Full Text PDF

Sensory information may be represented in the brain by stereotyped mapping of axonal inputs or by patterning that varies between individuals. In olfaction, a stereotyped map is evident in the first sensory processing centre, the olfactory bulb (OB), where different odours elicit activity in unique combinatorial patterns of spatially invariant glomeruli. Activation of each glomerulus is relayed to higher cortical processing centres by a set of ∼20-50 'homotypic' mitral and tufted (MT) neurons.

View Article and Find Full Text PDF

The ability of sensory systems to detect and process information from the environment relies on the elaboration of precise connections between sensory neurons in the periphery and second order neurons in the CNS. In mice, the accessory olfactory system is thought to regulate a wide variety of social and sexual behaviors. The expression of the Slit receptors Robo-1 and Robo-2 in vomeronasal sensory neurons (VSNs) suggests they may direct the stereotypic targeting of their axons to the accessory olfactory bulb (AOB).

View Article and Find Full Text PDF

In mammals, retinal ganglion cell (RGC) projections initially intermingle and then segregate into a stereotyped pattern of eye-specific layers in the dorsal lateral geniculate nucleus (dLGN). Here we found that in mice deficient for ephrin-A2, ephrin-A3 and ephrin-A5, eye-specific inputs segregated but the shape and location of eye-specific layers were profoundly disrupted. In contrast, mice that lacked correlated retinal activity did not segregate eye-specific inputs.

View Article and Find Full Text PDF

Olfactory sensory neurons expressing a given odorant receptor (OR) project with precision to specific glomeruli in the olfactory bulb, generating a topographic map. In this study, we demonstrate that neurons expressing different ORs express different levels of ephrin-A protein on their axons. Moreover, alterations in the level of ephrin-A alter the glomerular map.

View Article and Find Full Text PDF

The past decade has seen remarkable advances in identification of the proteins regulating axon guidance and synapse formation. Understanding the structural and molecular basis of their signaling properties is now the task at hand. The recently characterized crystal structure of the complex formed between the ligand-binding domain of EphB2 and the ectodomain of its binding partner ephrin-B2 provides an insight into the recognition and signal transduction mechanisms of this large multifunctional family of surface receptors.

View Article and Find Full Text PDF

We have analyzed the organization and sequence of 73 V1R genes encoding putative pheromone receptors to identify regulatory features and characterize the evolutionary history of the V1R family. The 73 V1Rs arose from seven ancestral genes around the time of mouse-rat speciation through large local duplications, and this expansion may contribute to speciation events. Orthologous V1R genes appear to have been lost during primate evolution.

View Article and Find Full Text PDF