Publications by authors named "Tyler Cosby"

In this work, a series of novel boronium-bis(trifluoromethylsulfonyl)imide [TFSI] ionic liquids (IL) are introduced and investigated. The boronium cations were designed with specific structural motifs that delivered improved electrochemical and physical properties, as evaluated through cyclic voltammetry, broadband dielectric spectroscopy, densitometry, thermogravimetric analysis, and differential scanning calorimetry. Boronium cations, which were appended with -alkylpyrrolidinium substituents, exhibited superior physicochemical properties, including high conductivity, low viscosity, and electrochemical windows surpassing 6 V.

View Article and Find Full Text PDF

Ion dynamics and charge transport in 1-methyl-3-octylimidazolium ionic liquids with chloride, bromide, tetrafluoroborate, tricyanomethanide, hexafluorophosphate, triflate, tetrachloroaluminate, bis(trifluoromethylsulfonyl)imide, and heptachlorodialuminate anions are investigated by broadband dielectric spectroscopy, rheology, viscometry, and differential scanning calorimetry. A detailed analysis reveals an anion and temperature-dependent separation of characteristic molecular relaxation rates extracted from various representations of the dielectric spectra. The separation in rates extracted from the electric modulus and conductivity formalisms is interpreted as an experimental signature of significant heterogeneity in the local ion dynamics associated with the structural glass transition, viscosity, and dc ion conductivity.

View Article and Find Full Text PDF

All-cellulose xerogel composites were fabricated using a facile, scalable three-step process-(1) partial ionic liquid dissolution, (2) non-solvent rinsing, and (3) drying. The xerogel composites are composed of two phases where the yarn center is non-porous highly crystalline cellulose I surrounded by mesoporous amorphous regenerated cellulose. The composite had high 149 m g Brunauer-Emmett-Teller (BET) surface area with 11.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) are an emerging class of non-aqueous solvents that are potentially scalable, easy to prepare and functionalize for many applications ranging from biomass processing to energy storage technologies. Predictive understanding of the fundamental correlations between local structure and macroscopic properties is needed to exploit the large design space and tunability of DESs for specific applications. Here, we employ a range of computational and experimental techniques that span length-scales from molecular to macroscopic and timescales from picoseconds to seconds to study the evolution of structure and dynamics in model DESs, namely Glyceline and Ethaline, starting from the parent compounds.

View Article and Find Full Text PDF

Polymerized ionic liquids are a promising class of versatile solid-state electrolytes for applications ranging from electrochemical energy storage to flexible smart materials that remain limited by their relatively low ionic conductivities compared to conventional electrolytes. Here, we show that the polymerization of the vinyl cationic monomer, 1-ethyl-3-vinylimidazolium with the bis(trifluoromethanesulfonyl)imide counteranion, under nanoconfinement within 7.5 ± 1.

View Article and Find Full Text PDF

Broadband dielectric spectroscopy is employed to probe dynamics in low molecular weight poly(cis-1,4-isoprene) (PI) confined in unidirectional silica nanopores with mean pore diameter, D, of 6.5 nm. Three molecular weights of PI (3, 7 and 10 kg/mol) were chosen such that the ratio of D to the polymer radius of gyration, R, is varied from 3.

View Article and Find Full Text PDF

The impact of mesoscale organization on dynamics and ion transport in binary ionic liquid mixtures is investigated by broad-band dielectric spectroscopy, dynamic-mechanical spectroscopy, X-ray scattering, and molecular dynamics simulations. The mixtures are found to form distinct liquids with macroscopic properties that significantly deviate from weighted contributions of the neat components. For instance, it is shown that the mesoscale morphologies in ionic liquids can be tuned by mixing to enhance the static dielectric permittivity of the resulting liquid by as high as 100% relative to the neat ionic liquid components.

View Article and Find Full Text PDF

Broadband dielectric spectroscopy is employed to investigate the impact of supramolecular structure on charge transport and dynamics in hydrogen-bonded 2-ethyl-4-methylimidazole and 4-methylimidazole. Detailed analyses reveal (i) an inverse relationship between the average supramolecular chain length and proton conductivity and (ii) no direct correlation between the static dielectric permittivity and proton conductivity in imidazoles. These findings raise fundamental questions regarding the widespread notion that extended supramolecular hydrogen-bonded networks facilitate proton conduction in hydrogen bonding materials.

View Article and Find Full Text PDF

The role of anions in charge transport and localized dipolar relaxations in tributyloctylphosphonium ionic liquids is investigated by broadband dielectric spectroscopy and rheology. The dielectric spectra are quantitatively described by a combination of the random barrier model which accounts for ion transport and empirical Havriliak-Negami functions to characterize dipolar relaxations. Two secondary relaxations are observed at temperatures below the calorimetric glass transition temperature, where the primary structural relaxation is essentially frozen at the relevant experimental time scales.

View Article and Find Full Text PDF

Experimental evidence of the dynamics of mesoscopic structure in room-temperature ionic liquids-a feature expected to correlate with many physicochemical properties of these materials-remains limited. Here, we report the observation of slow, sub-α relaxations corresponding to dynamics of nanoscale hydrophobic aggregates in a systematic series of 1-alkyl-3-methylimidazolium-based ionic liquids from detailed analysis of dynamic-mechanical and broad-band dielectric spectra. The emergence of the sub-α relaxations correlates with increases in the zero-shear viscosity and static dielectric permittivity, constituting direct evidence of the influence of mesoscale aggregation on the physicochemical properties of ionic liquids.

View Article and Find Full Text PDF

Continuous progress in energy storage and conversion technologies necessitates novel experimental approaches that can provide fundamental insights regarding the impact of reduced dimensions on the functional properties of materials. Here, we demonstrate a nondestructive experimental approach to probe nanoscale ion dynamics in ultrathin films of polymerized 1-vinyl-3-ethylimidazolium bis(trifluoromethylsulfonyl)imide over a broad frequency range spanning over 6 orders of magnitude by broadband dielectric spectroscopy. The approach involves using an electrode configuration with lithographically patterned silica nanostructures, which allow for an air gap between the confined ion conductor and one of the electrodes.

View Article and Find Full Text PDF

The impact of supramolecular hydrogen bonded networks on dynamics and charge transport in 2-ethyl-4-methylimidazole (2E4MIm), a model proton-conducting system, is investigated by broadband dielectric spectroscopy, depolarized dynamic light scattering, viscometry, and calorimetry. It is observed that the slow, Debye-like relaxation reflecting the supramolecular structure in neat 2E4MIm is eliminated upon the addition of minute amounts of levulinic acid. This is attributed to the dissociation of imidazole molecules and the breaking down of hydrogen-bonded chains, which leads to a 10-fold enhancement of ionic conductivity.

View Article and Find Full Text PDF

Charge transport and structural dynamics in the 1:2 mol ratio mixture of lidocaine and decanoic acid (LID-DA), a model deep eutectic mixture (DEM), have been characterized over a wide temperature range using broad-band dielectric spectroscopy and depolarized dynamic light scattering. Additionally, Fourier transform infrared spectroscopy measurements were performed to assess the degree of proton transfer between the neutral parent molecules. From our detailed analysis of the dielectric spectra, we have determined that this carboxylic-acid-based DEM is approximately 25% ionic at room temperature.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiona1r04r9efepaptafsubner9nd4ir4gse): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once