Publications by authors named "Tyler Bland"

Background: Medical students often struggle to engage with and retain complex pharmacology topics during their preclinical education. Traditional teaching methods can lead to passive learning and poor long-term retention of critical concepts.

Objective: This study aims to enhance the teaching of clinical pharmacology in medical school by using a multimodal generative artificial intelligence (genAI) approach to create compelling, cinematic clinical narratives (CCNs).

View Article and Find Full Text PDF

Background: Medical education increasingly relies on digital learning materials. Despite recognition by the Association of American Medical Colleges Institute for Improving Medical Education, medical education design often fails to consider quality multimedia design principles. Further, the AAMC-IIME issued a call to study the role of design principles in medical education.

View Article and Find Full Text PDF

Docetaxel is the most commonly used chemotherapy for advanced prostate cancer (PC), including castration-resistant disease (CRPC), but the eventual development of docetaxel resistance constitutes a major clinical challenge. Here, we demonstrate activation of the cholinergic muscarinic M1 receptor (CHRM1) in CRPC cells upon acquiring resistance to docetaxel, which is manifested in tumor tissues from PC patients post- vs. pre-docetaxel.

View Article and Find Full Text PDF

Neuroendocrine prostate cancer (NEPC) is a lethal prostate cancer subtype arising as a consequence of more potent androgen receptor (AR) targeting in castration-resistant prostate cancer (CRPC). Its molecular pathogenesis remains elusive. Here, we report that the Wnt secretion mediator Wntless (WLS) is a major driver of NEPC and aggressive tumor growth and .

View Article and Find Full Text PDF

Activation of the leptin receptor, LepRb, by the adipocytokine/neurotrophic factor leptin in the central nervous system has procognitive and antidepressive effects. Leptin has been shown to increase glutamatergic synaptogenesis in multiple brain regions. In contrast, mice that have a mutation in the LepRb gene show abnormal synapse development in the hippocampus as well as deficits in cognition and increased depressive-like symptoms.

View Article and Find Full Text PDF

Leptin has neurotrophic actions in the hippocampus to increase synapse formation and stimulate neuronal plasticity. Leptin also enhances cognition and has antidepressive and anxiolytic-like effects, two hippocampal-dependent behaviors. In contrast, mice lacking leptin or the long form of the leptin receptor (LepRb) have lower cortical volume and decreased memory and exhibit depressive-like behaviors.

View Article and Find Full Text PDF

Tropomodulins (Tmods) cap F-actin pointed ends and have altered expression in the brain in neurological diseases. The function of Tmods in neurons has been poorly studied and their role in neurological diseases is entirely unknown. In this article, we show that Tmod1 and Tmod2, but not Tmod3, are positive regulators of dendritic complexity and dendritic spine morphology.

View Article and Find Full Text PDF

A dimeric branched peptide TATp-D designed as an analogue of the HIV-Tat protein transduction domain (TATp), a prototypical cell penetrating peptide (CPP), demonstrates significantly enhanced cell uptake at 0.25 to 2.5 μM.

View Article and Find Full Text PDF

Leptin acts in the hippocampus to enhance cognition and reduce depression and anxiety. Cognitive and emotional disorders are associated with abnormal hippocampal dendritic spine formation and synaptogenesis. Although leptin has been shown to induce synaptogenesis in the hypothalamus, its effects on hippocampal synaptogenesis and the mechanism(s) involved are not well understood.

View Article and Find Full Text PDF