Epithelial cells secrete chloride to regulate water release at mucosal barriers, supporting both homeostatic hydration and the "weep" response that is critical for type 2 immune defense against parasitic worms (helminths). Epithelial tuft cells in the small intestine sense helminths and release cytokines and lipids to activate type 2 immune cells, but whether they regulate epithelial secretion is unknown. Here, we found that tuft cell activation rapidly induced epithelial chloride secretion in the small intestine.
View Article and Find Full Text PDFChemosensory epithelial tuft cells contribute to innate immunity at barrier surfaces, but their differentiation from epithelial progenitors is not well understood. Here, we exploited differences between inbred mouse strains to identify an epithelium-intrinsic mechanism that regulates tuft cell differentiation and tunes innate type 2 immunity in the small intestine. Balb/cJ (Balb) mice had fewer intestinal tuft cells than C57BL/6J (B6) mice and failed to respond to the tuft cell ligand succinate.
View Article and Find Full Text PDFTuft cells are solitary chemosensory epithelial cells that can sense lumenal stimuli at mucosal barriers and secrete effector molecules to regulate the physiology and immune state of their surrounding tissue. In the small intestine, tuft cells detect parasitic worms (helminths) and microbe-derived succinate, and signal to immune cells to trigger a Type 2 immune response that leads to extensive epithelial remodeling spanning several days. Acetylcholine (ACh) from airway tuft cells has been shown to stimulate acute changes in breathing and mucocilliary clearance, but its function in the intestine is unknown.
View Article and Find Full Text PDFTuft cells are rare chemosensory epithelial cells that monitor their environment and relay messages to the surrounding tissue via secretion of neuromodulatory and immunomodulatory molecules. In the small intestine tuft cells detect helminth infection, protist colonization, and bacterial dysbiosis, and initiate a type 2 immune response characterized by tissue remodeling. In the airways, tuft cells sense bacteria, allergens, and noxious stimuli and drive evasive behavior, neuroinflammation, and anti-bacterial responses.
View Article and Find Full Text PDFHelminths, allergens, and certain protists induce type 2 immune responses, but the underlying mechanisms of immune activation remain poorly understood. In the small intestine, chemosensing by epithelial tuft cells results in the activation of group 2 innate lymphoid cells (ILC2s), which subsequently drive increased tuft cell frequency. This feedforward circuit is essential for intestinal remodeling and helminth clearance.
View Article and Find Full Text PDFAlthough microRNAs (miRNAs) are among the most intensively studied molecules of the past 20 years, determining what is and what is not a miRNA has not been straightforward. Here, we present a uniform system for the annotation and nomenclature of miRNA genes. We show that less than a third of the 1,881 human miRBase entries, and only approximately 16% of the 7,095 metazoan miRBase entries, are robustly supported as miRNA genes.
View Article and Find Full Text PDF