Publications by authors named "Tyler B Pinter"

infection relies on iron acquisition from its host. takes up iron through heme uptake by the iron-responsive surface determinant (Isd) system and by the production of iron-scavenging siderophores. Staphyloferrin B (SB) is a siderophore produced by the 9-gene gene cluster for SB biosynthesis and efflux.

View Article and Find Full Text PDF

Metallothioneins (MTs) are cysteine-rich, metal-binding proteins that are found throughout Nature. This ubiquity highlights their importance in essential metal regulation, heavy metal detoxification and cellular redox chemistry. Missing from the current description of MT function is the underlying mechanism by which MTs achieve their proposed biological functions.

View Article and Find Full Text PDF

Staphylococcus aureus possesses a multitude of mechanisms by which it can obtain iron during growth under iron starvation conditions. It expresses an effective heme acquisition system (the iron-regulated surface determinant system), it produces two carboxylate-type siderophores staphyloferrin A and staphyloferrin B (SB), and it expresses transporters for many other siderophores that it does not synthesize. The ferric uptake regulator protein regulates expression of genes encoding all of these systems.

View Article and Find Full Text PDF

Mammalian metallothioneins (MTs) bind up to seven Zn(2+) using a large number of cysteine residues relative to their small size and can act as zinc-chaperones. In metal-saturated Zn7-MTs, the seven zinc ions are co-ordinated tetrahedrally into two distinct clusters separated by a linker; the N-terminal β-domain [(Zn3Cys9)(3-)] and C-terminal α-domain [(Zn4Cys11)(3-)]. We report on the competitive zinc metalation of apo-carbonic anhydrase [CA; metal-free CA (apo-CA)] in the presence of apo-metallothionein 1A domain fragments to identify domain specific determinants of zinc binding and zinc donation in the intact two-domain Znn-βαMT1A (human metallothionein 1A isoform; n=0-7).

View Article and Find Full Text PDF

The flexible coordination stoichiometry of a relatively high number of metal ions is a property unique to the metallothionein (MT) family of proteins. Mammalian MTs, for example, accommodate up to seven divalent metal ions in tetrahedral coordination geometries, using its complement of 20 cysteine ligands. The lability of the metals from these metalloclusters has been used to support the proposal of MTs acting as metal chaperones, by donating to other metal-binding proteins.

View Article and Find Full Text PDF

Mammalian metallothioneins (MTs) are small, metal binding proteins implicated in cellular metal ion homeostasis and heavy metal detoxification. Divalent, metal-saturated MTs form two distinct domains; the N-terminal β domain binds three metals using nine Cys residues, and the C-terminal α domain binds four metals with 11 Cys residues. Domain selection during zinc binding and cadmium exchange to human MT1A was examined using a series of competition reactions with mixtures of the isolated domain fragments.

View Article and Find Full Text PDF

The small, cysteine-rich metallothionein family of proteins is currently considered to play a critical role in the provision of metals to metalloenzymes. However, there is limited information available on the mechanisms of these fundamentally important interactions. We report on the competitive zinc metalation of apocarbonic anhydrase in the presence of apometallothionein 1A using electrospray-ionization mass spectrometry.

View Article and Find Full Text PDF

The facile axial ligand exchange properties of gallium(III) protoporphyrin IX in methanol solution were utilized to explore self-association interactions by NMR techniques. Structural changes were observed, as well as competitive behavior with the ligands acetate and fluoride, which differed from that seen with the synthetic analogue gallium(III) octaethylporphyrin which lacks acid groups in its side-chains and has less solution heterogeneity as indicated by absorption and MCD spectroscopies. The propionic acid side chains of protoporphyrin IX are implicated in all such interactions of PPIX, and both dynamic metal-propionic interactions and the formation of propionate-bridged dimers are observed.

View Article and Find Full Text PDF

The pathogenic bacterium Staphylococcus aureus has adopted specialized mechanisms for scavenging iron from its host. The nine cell wall and membrane-associated iron regulated surface determinant (Isd) proteins (IsdH, IsdB, IsdA, IsdC, IsdDEF, IsdG and IsdI) allow Staphylococcus aureus to scavenge iron from the heme in hemoglobin and haptoglobin-hemoglobin. Of these, it is IsdE that chaperones the heme to the ATP binding cassette-type transmembrane transporter (IsdF).

View Article and Find Full Text PDF

Ga(III)protoporphyrin-IX (Ga-PP) has been proposed as a model for the key interporphyrin interactions in malaria pigment. Unlike the paramagnetic parent iron heme derivatives, Ga-PP is readily soluble in methanol (MeOH). We report optical, mass spectroscopic, and theoretical results for Ga-PP as well as its reactions with myoglobin.

View Article and Find Full Text PDF

Metallothionein (MT) is a prominent metal-binding protein and in mammalian systems contains a two-domain betaalpha motif, while in lower life forms MT often consists of only a single-domain structure. There are also unusual MTs from American oysters that consist of multiple domains (from one to four alpha domains). This report details the study of the As(3+)-metalation to two different concatenated triple beta and alpha domain MTs using time-resolved electrospray ionization mass spectrometry (ESI MS).

View Article and Find Full Text PDF