Proc Natl Acad Sci U S A
August 2024
Viral infection is frequently assayed by ongoing expression of viral genes. These assays fail to identify cells that have been exposed to the virus but limit or inhibit viral replication. To address this limitation, we used a dual-labeling vesicular stomatitis virus (DL-VSV), which has a deletion of the viral glycoprotein gene, to allow evaluation of primary infection outcomes.
View Article and Find Full Text PDFNucleic acids are used in many therapeutic modalities, including gene therapy, but their ability to trigger host immune responses in vivo can lead to decreased safety and efficacy. In the case of adeno-associated viral (AAV) vectors, studies have shown that the genome of the vector activates Toll-like receptor 9 (TLR9), a pattern recognition receptor that senses foreign DNA. Here, we engineered AAV vectors to be intrinsically less immunogenic by incorporating short DNA oligonucleotides that antagonize TLR9 activation directly into the vector genome.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
December 2020
Gene therapy with recombinant adeno-associated viral (AAV) vectors is a promising modality for the treatment of a variety of human diseases. Nonetheless, there remain significant gaps in our understanding of AAV vector biology, due in part to the lack of robust methods to track AAV capsids and genomes. In this study, we describe a novel application of signal amplification by exchange reaction fluorescence hybridization (SABER-FISH) that enabled the visualization and quantification of individual AAV genomes after vector administration in mice.
View Article and Find Full Text PDFAntibodies are promising post-exposure therapies against emerging viruses, but which antibody features and in vitro assays best forecast protection are unclear. Our international consortium systematically evaluated antibodies against Ebola virus (EBOV) using multidisciplinary assays. For each antibody, we evaluated epitopes recognized on the viral surface glycoprotein (GP) and secreted glycoprotein (sGP), readouts of multiple neutralization assays, fraction of virions left un-neutralized, glycan structures, phagocytic and natural killer cell functions elicited, and in vivo protection in a mouse challenge model.
View Article and Find Full Text PDFThe recent Ebola virus outbreak in western Africa highlights the need for novel therapeutics that target Ebola virus and other filoviruses. Filoviruses require processing by host cell-derived cysteine cathepsins for productive infection. Here we report the generation of a focused library of cysteine cathepsin inhibitors and subsequent screening to identify compounds with potent activity against viral entry and replication.
View Article and Find Full Text PDFUnlabelled: Ebola virus (EBOV) makes extensive and intricate use of host factors in the cellular endosomal/lysosomal pathway to release its genome into the cytoplasm and initiate infection. Following viral internalization into endosomes, host cysteine proteases cleave the EBOV fusion glycoprotein (GP) to unmask the binding site for its intracellular receptor, the cholesterol transporter Niemann-Pick C1 (NPC1). GP-NPC1 interaction is required for viral entry.
View Article and Find Full Text PDFIn tsetse flies, nutrients for intrauterine larval development are synthesized by the modified accessory gland (milk gland) and provided in mother's milk during lactation. Interference with at least two milk proteins has been shown to extend larval development and reduce fecundity. The goal of this study was to perform a comprehensive characterization of tsetse milk proteins using lactation-specific transcriptome/milk proteome analyses and to define functional role(s) for the milk proteins during lactation.
View Article and Find Full Text PDFRegulation of tissue and development specific gene expression patterns underlies the functional specialization of organs in multi-cellular organisms. In the viviparous tsetse fly (Glossina), the female accessory gland is specialized to generate nutrients in the form of a milk-like secretion to support growth of intrauterine larva. Multiple milk protein genes are expressed specifically in the female accessory gland and are tightly linked with larval development.
View Article and Find Full Text PDFDuring pregnancy in the viviparous tsetse fly, lipid mobilization is essential for the production of milk to feed the developing intrauterine larva. Lipophorin (Lp) functions as the major lipid transport protein in insects and closely-related arthropods. In this study, we assessed the role of Lp and the lipophorin receptor (LpR) in the lipid mobilization process during tsetse reproduction.
View Article and Find Full Text PDFThe mosquito's body temperature increases dramatically when it takes a blood meal from a warm-blooded, vertebrate host. By using the yellow fever mosquito, Aedes aegypti, we demonstrate that this boost in temperature following a blood meal prompts the synthesis of heat shock protein 70 (Hsp70). This response, elicited by the temperature of the blood meal, is most robust in the mosquito's midgut.
View Article and Find Full Text PDFIn this study of the mosquito, Culex pipiens, we examined the impact of multiple bouts of dehydration and rehydration on survival, depletion of metabolic reserves and egg production in both non-diapausing and diapausing females. Mosquitoes provided with access to sugar during rehydration survived longer than those allowed to rehydrate without sugar, and their survival was similar to that of mosquitoes of the same age that were not dehydrated. Among mosquitoes not provided with sugar, each dehydration bout reduced the mosquito's dry mass - an effect likely to be due to the utilization of carbohydrates and lipid reserves.
View Article and Find Full Text PDF