The mammalian protein siderocalin binds bacterial siderophores and their iron complexes through cation-π and electrostatic interactions, but also displays high affinity for hydroxypyridinone complexes of trivalent lanthanides and actinides. In order to circumvent synthetic challenges, the use of siderocalin-antibody fusion proteins is explored herein as an alternative targeting approach for precision delivery of trivalent radiometals. We demonstrate the viability of this approach , using the theranostic pair Y (β, = 64 h)/Y (β, = 14.
View Article and Find Full Text PDFIntroduction: The in vivo generator Ce/La has the potential to serve as a PET imaging surrogate for both alpha-emitting Ac and Th radionuclides due to the unique Ce/Ce redox couple and the relatively long half-life of Ce. The purpose of this study was to demonstrate the compatibility of Ce with DOTA-based antibody drug conjugates, which would act as therapeutic agents when incorporating Ac.
Methods: The in vivo biodistributions of [Ce]Ce-DOTA and [Ce]Ce-citrate were assayed by microPET imaging over 25 h in Swiss Webster mice to determine the in vivo stability of the [Ce]Ce-DOTA complex.
Developing targeted α-therapies has the potential to transform how diseases are treated. In these interventions, targeting vectors are labelled with α-emitting radioisotopes that deliver destructive radiation discretely to diseased cells while simultaneously sparing the surrounding healthy tissue. Widespread implementation requires advances in non-invasive imaging technologies that rapidly assay therapeutics.
View Article and Find Full Text PDF