To suppress dendrite formation in lithium metal batteries, high cation transference number electrolytes that reduce electrode polarization are highly desirable, but rarely available using conventional liquid electrolytes. Here, we show that liquid electrolytes increase their cation transference numbers (e.g.
View Article and Find Full Text PDFChelating ionic liquids (ILs), in which polyether chains are pendent from the organic pyrrolidinium cation of the ILs (PEGylated ILs), were prepared that facilitate reversible electrochemical deposition/dissolution of Mg from a Mg(BH4)2 source. Mg electrodeposition processes in two specific PEGylated-ILs were compared against that in the widely studied N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid (BMPyrTFSI). The two chelating IL systems (one with a pendent polyether chain with three ether oxygens, MPEG3PyrTFSI, and the other with a seven-ether chain, MPEG7PyrTFSI) showed substantial improvement over BMPyrTFSI for Mg electrodeposition/dissolution.
View Article and Find Full Text PDFRaman spectroscopy was employed to assess the complex environment of magnesium salts in the n-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMPyrTFSI) room-temperature ionic liquid (RTIL). At room temperature, Mg(TFSI)2 was miscible with BMPyrTFSI and formulated by [Mg(TFSI)2](x)[BMPyrTFSI](1-x) (x ≤ 0.55).
View Article and Find Full Text PDFWe are currently in the midst of a race to discover and develop new battery materials capable of providing high energy-density at low cost. By combining a high-performance Si electrode architecture with a room temperature ionic liquid electrolyte, here we demonstrate a highly energy-dense lithium-ion cell with an impressively long cycling life, maintaining over 75% capacity after 500 cycles. Such high performance is enabled by a stable half-cell coulombic efficiency of 99.
View Article and Find Full Text PDFWe introduce a synthetic strategy to access functional semiconductors with general formula A(3)XY (A = IV, X-Y = III-V) representing a new class within the long-sought family of group IV/III-V hybrid compounds. The method is based on molecular precursors that combine purposely designed polar/nonpolar bonding at the nanoscale, potentially allowing precise engineering of structural and optical properties, including lattice dimensions and band structure. In this Article, we demonstrate the feasibility of the proposed strategy by growing a new monocrystalline AlPSi(3) phase on Si substrates via tailored interactions of P(SiH(3))(3) and Al atoms using gas source (GS) MBE.
View Article and Find Full Text PDF