Publications by authors named "Tycko R"

Rapid cooling to a solid state allows intermediates in chemical and biomolecular processes that occur in solution near room temperature to be trapped for subsequent measurements by magnetic resonance spectroscopies, electron microscopy, or other techniques. In time-resolved solid state nuclear magnetic resonance and rapid freeze-quench electron paramagnetic resonance studies, solutions are typically frozen by spraying into a cold bath or onto a cold metal surface. Although simulations suggest freezing on millisecond or submillisecond time scales, direct experimental measurements of cooling rates have been elusive.

View Article and Find Full Text PDF

Solutions of the intrinsically disordered, low-complexity domain of the FUS protein (FUS-LC) undergo liquid-liquid phase separation (LLPS) below a temperature T. To investigate whether local conformational distributions are detectably different in the homogeneous (i.e.

View Article and Find Full Text PDF

Dynamic nuclear polarization (DNP) enhanced magic angle spinning (MAS) solid-state NMR carried out at 25 K enables rapid acquisition of multi-dimensional C-N correlation spectra for protein structure studies and resonance assignment. Under commonly used DNP conditions, solvent deuteration reduces H-N cross polarization (CP) efficiencies, necessitates more careful optimization, and requires longer high-power N radio-frequency pulses. The sensitivity of 2D heteronuclear correlation experiments is potentially impaired.

View Article and Find Full Text PDF

Unlabelled: Solutions of the intrinsically disordered, low-complexity domain of the FUS protein (FUS-LC) undergo liquid-liquid phase separation (LLPS) below temperatures T in the 20-40° C range. To investigate whether local conformational distributions are detectably different in the homogeneous and phase-separated states of FUS-LC, we performed solid state nuclear magnetic resonance (ssNMR) measurements on solutions that were frozen on sub-millisecond time scales after equilibration at temperatures well above (50° C) or well below (4° C) T. Measurements were performed at 25 K with signal enhancements from dynamic nuclear polarization.

View Article and Find Full Text PDF

Polypeptides often self-assemble to form amyloid fibrils, which contain cross-β structural motifs and are typically 5-15 nm in width and micrometers in length. In many cases, short segments of longer amyloid-forming protein or peptide sequences also form cross-β assemblies but with distinctive ribbon-like morphologies that are characterized by a well-defined thickness (on the order of 5 nm) in one lateral dimension and a variable width (typically 10-100 nm) in the other. Here, we use a novel combination of data from solid-state nuclear magnetic resonance (ssNMR), dark-field transmission electron microscopy (TEM), atomic force microscopy (AFM), and cryogenic electron microscopy (cryoEM) to investigate the structures within amyloid ribbons formed by residues 14-23 and residues 11-25 of the Alzheimer's disease-associated amyloid-β peptide (Aβ and Aβ).

View Article and Find Full Text PDF

Prior work has shown that small proteins can fold (i.e., convert from unstructured to structured states) within 10  μs.

View Article and Find Full Text PDF

Extension of magnetic resonance imaging (MRI) techniques to the single micron scale has been the goal of research in multiple laboratories over several decades. It has proven difficult to achieve isotropic spatial resolution better than 3.0 μm in inductively-detected MRI near 300 K, even with well-behaved test samples, microcoils, and optimized MRI pulse sequences.

View Article and Find Full Text PDF

Misfolded Aβ is involved in the progression of Alzheimer's disease (AD). However, the role of its polymorphic variants or conformational strains in AD pathogenesis is not fully understood. Here, we study the seeding properties of two structurally defined synthetic misfolded Aβ strains (termed 2F and 3F) using in vitro and in vivo assays.

View Article and Find Full Text PDF

Self-assembly of amyloid-β peptides leads to oligomers, protofibrils, and fibrils that are likely instigators of neurodegeneration in Alzheimer's disease. We report results of time-resolved solid state nuclear magnetic resonance (ssNMR) and light scattering experiments on 40-residue amyloid-β (Aβ40) that provide structural information for oligomers that form on time scales from 0.7 ms to 1.

View Article and Find Full Text PDF

Fibrils formed by the 42-residue amyloid-β peptide (Aβ42), a main component of amyloid deposits in Alzheimer's disease (AD), are known to be polymorphic, i.e., to contain multiple possible molecular structures.

View Article and Find Full Text PDF

We review recent efforts to develop and apply an experimental approach to the structural characterization of transient intermediate states in biomolecular processes that involve large changes in molecular conformation or assembly state. This approach depends on solid state nuclear magnetic resonance (ssNMR) measurements that are performed at very low temperatures, typically 25-30 K, with signal enhancements from dynamic nuclear polarization (DNP). This approach also involves novel technology for initiating the process of interest, either by rapid mixing of two solutions or by a rapid inverse temperature jump, and for rapid freezing to trap intermediate states.

View Article and Find Full Text PDF

Dynamic nuclear polarization (DNP) can provide substantial sensitivity enhancements in solid state nuclear magnetic resonance (ssNMR) measurements on frozen solutions, thereby enabling experiments that would otherwise be impractical. Previous work has shown that nitroxide-based triradical compounds are particularly effective as dopants in DNP-enhanced measurements at moderate magic-angle spinning frequencies and moderate magnetic field strengths, generally leading to a more rapid build-up of nuclear spin polarizations under microwave irradiation than the more common biradical dopants at the same electron spin concentrations. Here we report the synthesis and DNP performance at 25 K and 9.

View Article and Find Full Text PDF

Elucidation of the detailed mechanisms by which biological macromolecules undergo major structural conversions, such as folding, complex formation, and self-assembly, is a central concern of biophysical chemistry that will benefit from new experimental methods. We describe a simple technique for initiating a structural conversion process by a rapid decrease in the temperature of a solution, i.e.

View Article and Find Full Text PDF

Spatial resolution in MRI is ultimately limited by the signal detection sensitivity of NMR, since resolution equal to ρiso in all three dimensions requires the detection of NMR signals from a volume ρiso3. With inductively detected NMR at room temperature, it has therefore proven difficult to achieve isotropic resolution better than ρiso = 3.0 μm, even with radio-frequency microcoils, optimized samples, high magnetic fields, optimized pulse sequence methods, and data acquisition times around 60 h.

View Article and Find Full Text PDF
Article Synopsis
  • * These methods provide a detailed understanding of the binding dynamics and structural changes occurring when the unstructured peptide substrate (M13) interacts with calmodulin, a crucial calcium regulator in eukaryotic cells.
  • * Analysis of the binding pathways reveals that the initial association involves multiple states, highlighting a quick transition to a compact final state along with slower, intermediate formations, revealing complex dynamics in peptide binding.
View Article and Find Full Text PDF

Although amyloid plaques composed of fibrillar amyloid-β (Aβ) assemblies are a diagnostic hallmark of Alzheimer's disease (AD), quantities of amyloid similar to those in AD patients are observed in brain tissue of some nondemented elderly individuals. The relationship between amyloid deposition and neurodegeneration in AD has, therefore, been unclear. Here, we use solid-state NMR to investigate whether molecular structures of Aβ fibrils from brain tissue of nondemented elderly individuals with high amyloid loads differ from structures of Aβ fibrils from AD tissue.

View Article and Find Full Text PDF

Previous studies have shown that racemic mixtures of 40- and 42-residue amyloid-β peptides (d,l-Aβ40 and d,l-Aβ42) form amyloid fibrils with accelerated kinetics and enhanced stability relative to their homochiral counterparts (l-Aβ40 and l-Aβ42), suggesting a "chiral inactivation" approach to abrogating the neurotoxicity of Aβ oligomers (Aβ-CI). Here we report a structural study of d,l-Aβ40 fibrils, using electron microscopy, solid-state nuclear magnetic resonance (NMR), and density functional theory (DFT) calculations. Two- and three-dimensional solid-state NMR spectra indicate molecular conformations in d,l-Aβ40 fibrils that resemble those in known l-Aβ40 fibril structures.

View Article and Find Full Text PDF

Cryogenic electron microscopy (cryo-EM) is an important tool for determining the molecular structure of proteins and protein assemblies, including helical assemblies such as amyloid fibrils. In reconstruction of amyloid fibril structures from cryo-EM images, an important early step is the selection of fibril locations. This fibril picking step is typically done by hand, a tedious process when thousands of images need to be analyzed.

View Article and Find Full Text PDF

Low complexity (LC) head domains 92 and 108 residues in length are, respectively, required for assembly of neurofilament light (NFL) and desmin intermediate filaments (IFs). As studied in isolation, these IF head domains interconvert between states of conformational disorder and labile, β-strand-enriched polymers. Solid-state NMR (ss-NMR) spectroscopic studies of NFL and desmin head domain polymers reveal spectral patterns consistent with structural order.

View Article and Find Full Text PDF

Amyloid-β (Aβ) fibrils exhibit self-propagating, molecular-level polymorphisms that may contribute to variations in clinical and pathological characteristics of Alzheimer's disease (AD). We report the molecular structure of a specific fibril polymorph, formed by 40-residue Aβ peptides (Aβ40), that is derived from cortical tissue of an AD patient by seeded fibril growth. The structure is determined from cryogenic electron microscopy (cryoEM) images, supplemented by mass-per-length (MPL) measurements and solid-state NMR (ssNMR) data.

View Article and Find Full Text PDF
Article Synopsis
  • Calmodulin (CaM) interacts with target proteins in response to rising intracellular calcium (Ca) levels, undergoing significant conformational changes when binding with calcium ions, which facilitates the formation of protein complexes.
  • The study investigates the complex formation between a peptide (M13) from skeletal muscle myosin light chain kinase and CaM, utilizing techniques like selective isotope labeling and solid-state NMR to analyze the process on a millisecond timescale.
  • Results show that the N-terminal part of M13 quickly adopts an α-helical structure and forms contacts with CaM within about 2 milliseconds, while the C-terminal region changes more slowly over 8 milliseconds, indicating gradual structural stabilization in the complex.
View Article and Find Full Text PDF

Protein domains without the usual distribution of amino acids, called low complexity (LC) domains, can be prone to self-assembly into amyloid-like fibrils. Self-assembly of LC domains that are nearly devoid of hydrophobic residues, such as the 214-residue LC domain of the RNA-binding protein FUS, is particularly intriguing from the biophysical perspective and is biomedically relevant due to its occurrence within neurons in amyotrophic lateral sclerosis, frontotemporal dementia, and other neurodegenerative diseases. We report a high-resolution molecular structural model for fibrils formed by the C-terminal half of the FUS LC domain (FUS-LC-C, residues 111-214), based on a density map with 2.

View Article and Find Full Text PDF

HIV-1 maturation involves conversion of the immature Gag polyprotein lattice, which lines the inner surface of the viral membrane, to the mature capsid protein (CA) lattice, which encloses the viral RNA. Maturation inhibitors such as bevirimat (BVM) bind within six-helix bundles, formed by a segment that spans the junction between the CA and spacer peptide 1 (SP1) subunits of Gag, and interfere with cleavage between CA and SP1 catalyzed by the HIV-1 protease (PR). We report solid-state NMR (ssNMR) measurements on spherical virus-like particles (VLPs), facilitated by segmental isotopic labeling, that provide information about effects of BVM on the structure and dynamics of CA-SP1 junction helices in the immature lattice.

View Article and Find Full Text PDF

Large enhancements in nuclear magnetic resonance (NMR) signals provided by dynamic nuclear polarization (DNP) at low temperatures have the potential to enable inductively-detected H magnetic resonance imaging (MRI) with isotropic spatial resolution on the order of one micron, especially when low temperatures and DNP are combined with microcoils, three-dimensional (3D) phase encoding of image information, pulsed spin locking during NMR signal detection, and homonuclear dipolar decoupling by Lee-Goldburg (LG) irradiation or similar methods. However, the relatively slow build-up of nuclear magnetization under DNP leads to very long acquisition times for high-resolution 3D images unless the sample volume or field of view (FOV) is restricted. We have therefore developed a method for slice selection in low-temperature, DNP-enhanced MRI that limits the FOV to about 50 μm in one or more dimensions.

View Article and Find Full Text PDF

In aqueous solutions, the 214-residue low-complexity domain of the FUS protein (FUS-LC) is known to undergo liquid-liquid phase separation and also to self-assemble into amyloid-like fibrils. In previous work based on solid state nuclear magnetic resonance (ssNMR) methods, a structural model for the FUS-LC fibril core was developed, showing that residues 39-95 form the fibril core. Unlike fibrils formed by amyloid-β peptides, α-synuclein, and other amyloid-forming proteins, the FUS-LC core is largely devoid of purely hydrophobic amino acid side chains.

View Article and Find Full Text PDF